CyPro User Manual

version 46

applies to CyPro v3.1.0 and later

cybreTech

E 1998-2021 Cybrotech Ltd.

Cybrotech Ltd.

68 St Margarets Road, Edgware
Middlesex HA8 9UU

London, UK
info@cybrotech.com
www.cybrotech.com

info@cybrotech.com
www.cybrotech.com

Index q Installation

Index
10 1= P RPR R USUPRPRRP 3
[To [N L1 o o DO PRSP 5
113 1= 1o o P PRRPRP 5
(©70] 1970010 a Tt 1T o I PSPPSR 6
OIS a1 (=5 = T = O PERRT 7
= T IR0 T To (o PRSPPSO 7
Standard tOOIDAoooi i 7
Program tOO0IDATcci i 7
Communication tOOIDANuiiiiiiei e 7
[(01T A == TR 8
SEALUS DA .. eeiiiee ettt e et e e e e e e e e e e e e aann 8
PUI-AOWN MENU ... e e 9
LT[11/ T T (o PR 10
ONIINE MONITOL ...ttt e e e e e s et e et e e e e e s nbbba e e e e e e e e ann 11
IAENTITY MOTUIES ..ottt 12
IMIUITISEINA . ..ottt ettt e e e e e e e s bbb e et e e e e e e sabbbn e e e e e e e e anne 13
el =T a0 41T oo OO U PP PPPPRPPPPPRPN 14
HEIAWEIE ...ttt ettt e e e e e e bbb e et e e e e e anabntneeeaeeaaaane 14
EXPansion MOAUIESooiiiiiiiiiiiii e 14
HarOWArE SELUP....ciiiiiiieieie ettt 14
DEVICE PIOPEITIES ...eiiiitiiie ettt et e e e sbbe e e e 15
VATTADIES ...ttt e e e e 16
NAMING CONVENTION ...ttt e et e et e e e sbneee e 16
Y {[oTox= 11 o] o EE PP PPPPR PP 16
BaSIC A8 TYPES....eeeeiiiiieie ettt 16
L@ 11 a1 e F= r= 1Y/ 0 1= PPN 17
Retentive VariabIEseveiiiiieee e 17
EE VANADIES ... 18
T IRV = o SR 19
LI = TP EUPT PR 19
U1 EST= 0 1] = SRR 20
L@ T aRe 1= 1= NV (10 1= PPN 20
L0101 = PN 21
VISTOIIIEY e e e 21
RETTESN PrOCESSINGveeieiiieei ettt e e 21
SCAN OVBITUN . ..ttt 21
S (0 [o3 (01 =0 I ()4 S OPUPRERR 22
ASSIONMENT ..o 22
EXPIESSIONS ..eiiiiteiie ittt e et e ettt et e et e et ea e 22
(O 01T =1 0] £ T TP P TP PRPRPRPRPRPRIN 22
EXPression @ValUALIONcuuiiiiiiiiee et 22
TYPE CONVEISION. ...ttt e e e ettt e e ettt et e e e e e ettt e e e e e s e e nbbe b e e e e e e e e e annnbnneaeeaeas 23
MUIITING EXPIrESSIONS. .. eeiiiiiiiiiie ettt e et e et e e e abaeeeean 24
FIOW CONTIOL. ...ttt e e e e e e e 24
RETUMN VAIUEttt ettt e e e s e e e e e e e s e s e e e e e e e s e nnnnees 25
(@ ol=T g 1o] gl oF= T 0[] IO PP UUP PRI 26
(TS =T - | SO 26
PHNEFUNCHIONS .ottt e et e e e e st e e e e e e e e anns 26
OP KB S ettt ettt et e e nees 27
Y= T PP PPOPPUPPRPRR 28
Program NanliNgoooieeii it 31
SEIIAI INTEITACE. ...cei ettt e et e e e e e e e e st e e e e e e e e e nnbeneeeaeeas 33
FRATUIES ...ttt e e et e e e e e e 33
Free-programmable MOAE ... e 34
Y= 1= Tox Lo] o SRS 34
CrEALE IMESSATE ...uvuvutututuritititutitatatatatatabababebebababeb e b et et st sb st e et s ettt sttt s bebsbsbebsbneen 34
Y =TT I g LSTSTT= o RPN 35
SEAIT FECEIVET ...ttt ettt ettt e e e e e sttt e e e e e e e s nnbbbreeeaaeeeann 36

Index q Installation

Parse reCeiVed MESSAGEuueiiiiiiiiei ittt e e e 37
Free-programmable TCP/IP ...ttt e e e e e s st aan e e e e e e e anns 38
INILIANZE SOCKEL.....ci it ee e 38

UDP MO ..ttt ettt ettt ettt e e et e e e et e e e snbb e e e anbbeeeeabbeeeean 39

TP S T e 39

TCP SIAVE .ttt 39
N300 (T T O PO PO P PP PPPRPPPPPRP 40
Ethernet CONNECLIONeiiiiiiiie et e et e e e 40
CONNECTION OPLIONS ...ttt e et e et e e et e e et e e e e e 41
1. Local Network CONNECTIONcuuiiiiiiiiie e 42

A][= Tox i ot] o g [=Tox 1T o SRR PRRPR 42

3. Internet connection using known address on Cybro sidec..ccccvvvveeeeennins 42

4. Internet connection using push and known address on PC side 43

5. Internet connection using web scada as arelay..........cccccvveeeeeeeiiiiciiiiinee e, 43
EtNErNet SOCKELS .ooiiiiiee ettt e e e e e et e e e e e e st neeeaeeeeeaanns 45
I T To o [PP PP PEPPPOPN 46

P2 =Y T To [T 0 SRS UPRRPUR 46

G T O L B (=T U= PSP PPPTT 46

A, ON-CRANGE ...ttt et 46
Yoo N A== L 0] 1= 47
V=T o) o [)Y7=T o 1= T 1o) o PR 47
SYNCRIONIZEA VAIUE........uuiiiiiiiiiiiiiiiieiiii bbb es s ensnssenenennnrnrnens 47
MODBUS SIQVE ..ceiieiiitiiet ettt ettt e e e e e ettt e e e e e e e s nnte e eaeeeseannntananeaaaeaeaanns 48
AAAIEIONAL FEATUIES ...ttt e e e e et e e e e e s e bbb e e e e e e e e e nnbee e 49
REAIFIIME ClOCK. ...iiii et e et e e e e e st eaeeeeeaann 49
NAD GJIBS ...ttt ettt e e e e ettt e e e e e b e et e e e e r e e e e e e e aan 50
PaSSWOIT PrOtECTION.eiiiiiiiie ittt ettt e et e e 51
(7ol aaTaqF=Tg o Bl 1T o TSI o] o] 1 o] 0 13PN 52
(CTo] 1] o To IR r= T (= To PP PPPPRPPP 54
(=T I A = 10 ATV = PPN 54

SEEP 2: VANADIES ... 54

S (=T O TG Y41 (= oo Lo [TP PPPRPPN 54

STEP 4 TUN ettt e et e e et e e e e e 55
AAPPENAIX 1 56
Data type SUMIMATYcooiiiiieieieiee e 56
EIEMEBNTANY ..cceeieieeeeeeeeeeee e 56
INPUL/OULPUL ..ttt 56
LI = TP EUPT PR 56
(0] 5] ¥= KRN 56
SHUCIUrEd tEXE SUMIMEAIYveiivieieiiiieieteeeveeeeeteseeeseeaesseaessssessssessessssssessssssseensssssnsnsnsnennnsnnes 57
(O 0]=T = 1 (o] £ TP PP PP PPPPPPPPPPTPP 57

FIOW CONTIOL. ...ttt e e e e e e e 57

EAQE ELECT ... eii it 58

TYPE CONVEISION. ...ttt e e ettt e ettt e e e e e ettt e e e e e e e e s bbe bt e e aeeesaannnbaneeeaeaas 58

L= A= LN o o] £ £ TP 58
DiSPlay fUNCLIONSccoiiiiie e e e e e 59

=] Y0 Q0T o 1o SRR 59
RETUM VAIUE ...ttt e e e e 59
FUNCHON TIFAIY ...t e e 60
INSErUCTION lIST SUMMIAIY ...eeiiiiieie ittt e et e e e e e et e e e e e e e e ennns 61
Operator PANEl CRANACLEISiuiiii it 63
KeyDOard SNOMCULSeeiiiiiiieie et e e e e e e e e e e e 64
(1= = = | RS PRERRR 64

=) (=T 1o T PEUT TR 64

Introduction Y Installation

Introduction

Installation

CyPro is integrated development environment for Cybro controllers, with text editor, compiler and
on-line monitor. It's running on Windows 7/8/10 or Linux/Wine.

Each controller has unique 5-digit serial number, also used as communication address (NAD).

Compiler implements structured text (ST) and instruction list (IL) from IEC 61131-3 standard for
programming logical controllers. Other languages are not supported.

IEC 61131-3
instruction structured ladder function sequential
list text diagram block diagram function chart

Hardware requirements are low, any PC capable of running MS Windows should be sufficient.
Installation uses cca. 40Mb, default directory is C:\Program Files (x86)\Cybrotech\CyPro-3.

.3 for Cybro-3 Setup

Select Destination Location [
Where should CyPro be installed? 1P

Setup will install CyPro into the following folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

|C:‘Program Files (x86)\Cybrotech\CyPro-3 | | Browse...

At least 37.6 MB of free disk space is reguired.

Next> | | Cancel

Installation does the following:

unpack files into specified directory
create start menu group and icons
create desktop icon (optional)

set association to .cyp file type (optional)

E I E]

Default project directory is C:\Program Files (x86)\Cybrotech\CyPro-3\Projects. No file is copied to
windows directory, no system files are replaced or changed.

To upgrade CyPro, install a new release into the same directory. User settings will be preserved.
With new CyPro, it is required to also upgrade firmware (kernel). To do this, open Tools/Kernel
Maintenance and send new kernel.

Introduction § Communication

Communication
To establish communication with controller in a local network, follow this steps:

M File/ New
9 Hardware / Autodetect

Controller can be connected in a several ways:

LAN connection (with router)

Pt A = o
. E—— I E— I Ea—
Cybro-3 Cybro-3 Cybro-3

desktop PC

1 | | |

@

USB or serial connection

laptop

Direct connection (no router)

Ethernet e —

Internet connection

i—\n o oy

desktop PC router router Cybro-3

| ! ! !

@ @ @ 4

For more details, check Networking section.

Introduction Y User interface

User interface

Main window

CyPro consists of editor, toolbars and status bar. Default screen is shown below:

- Eile Edit View Project Program Tools Window Help

Vel vl

© New Open Save

New Pragram - 5T: function main:void;

Ln2, Col1

192.168.1.100 1234 Run EH W Joams B R

Each component can be docked or floating. To undock, drag the component by the left vertical line
over the edit area. To dock it again, drag window to main window border.

Standard toolbar

[Hew Create a new empty project

G Open Open an existing project (Ctrl-O)

& 52 save current project (Ctrl-S)

& Frint. print current project (Ctrl-P)

& €U Remove the selection and place it on the clipboard (Ctrl-X)

Con¥. Copy the selection onto the clipboard (Ctrl-C)

B Paste |nsert the content of the clipboard at the cursor, replacing any selection (Ctrl-V)

Program toolbar

B8l Hardware' Ophen the Hardware Setup dialog box (F5)
B Alecatin. 501y the Allocation Editor dialog box (F6)
== Mesks | Open the Mask List editor (F7)

] sodkets | Ohen the Socket List editor (F8)

Communication toolbar

Bz Send Send current project to Cybro (F9)

By Menitor. e the on-line Variable Monitor (F10)

b St Start program (F11)

B 5P Stop program and turn off all outputs (F12)

Introduction Y User interface

Project tree
Displays project hierarchically.

E|" Project: Untitled
=% Program: New Program
E|- Hardware
. L.dBy CPU Unit: CyBra-3
E5 Slot 1: LC10-0
----- BEl Slot 2 LC10-0
M azks

E|_;H Saockets

E;‘l Socket 1 [on_change, 0 wvars)
e ST: function main:woid;

Right clicking any component opens it's context sensitive pop-up menu. Depending on type, it is
possible to Add, Edit, Delete or change Properties of the selected component.

Status bar

Status bar shows various information about communication and connected Cybro.

Modified 192.168.1.4 6512 Stop ETH_W.| 26ms | X X
project IP A-bus PLC com port delay Tx/Rx
status address address status status indicators

System message (left side) show result of the preceding operation.

Project status indicate that current project is not saved. It reflects changes in any part of the project,
such as source, allocation, mask, socket, data manager or monitor list.

IP address shows IP address of connected controller.
A-bus address shows Cybro A-bus address (NAD). Right click to select another or enter a new one.
PLC status shows:

Off-line Cybro is not responding.

Run Cybro is on-line and running.

Stop Cybro is on-line, stopped. Outputs are inactive and program is not executing.

Pause Cybro is on-line, paused. Outputs remain active, but program is not executing.

Error Cybro is on-line, some error occurred. Error codes are listed in the appendix. To
clear the error press Stop.

Loader Cybro is on-line, but system software (kernel) seems to be damaged. Start Kernel

Maintenance and send a new kernel.
Com port status indicates whether communication cable is properly connected:

E OK

H cable not connected
[F communication port used by another application

Delay shows roundtrip time, from message sent to message received, in milliseconds.

Communication indicators show activity, green is transmit (Tx), red is receive (Rx).

Introduction Y User interface

Pull-down menu

File
New Create a new project
Open Open an existing project
Load From PLC Load project from controller
Save Save current project
Save As Save current project under new name
Save alc File Save allocation file in text format

Save csv File

Printer Setup
Print

Close

Recent Projects
Exit

Edit

Undo
Redo
Cut
Copy
Paste
Delete
Select All

Find

Find Next

Find Previous
Replace

Go to Line Number

Indent Block

Unindent Block
Comment/Uncomment
Insert Identifier

Properties

View

Project Tree

Local Allocation Editor
Editor Tabs

Compiler Messages

Standard Toolbar
Program Toolbar
Communication Toolbar

Project

New Program

New Program From PLC

Remove Program
Properties

Save allocation file in csv format

Set printer options

Print current project

Close current project

Open recently opened project
Exit program

Cancel the last action

Cancel the last Undo operation

Delete the selection and put it on the clipboard
Copy the selection onto the clipboard

Insert text from the clipboard to the insertion point
Delete the selection

Select the whole document

Find specified text

Find next occurrence of the specified text
Find previous occurrence of the specified text
Find specified text and replace it

Move insertion point to specified line number

Move selected lines right by inserting leading spaces
Move selected lines left by deleting leading spaces
Insert or delete comment ("//") before selected lines
Display list of functions and global variables

Show properties of the selected project module

Show Project Tree

Show Local Allocation Editor
Show Editor Tabs

Show Compiler Messages

Show Standard Toolbar
Show Program Toolbar
Show Communication Toolbar

Create a new program in the current project

Load program from controller into the current project
Remove program from the current project

Show properties of the current project

Introduction Y User interface

Program

Hardware Setup
Allocation Editor
Mask Editor
Socket Editor

Syntax Check
Send

Send Without Init
Start PLC

Stop PLC

Pause PLC

Add NAD

Remove Current NAD
Select NAD
Connect/Disconnect

Configuration

Tools

PLC Info
Kernel Maintenance

Online Monitor
Identify Modules
Init all variables
Multisend

Erase Protected Program

Communication Monitor

Environment Options

Open Hardware Setup dialog box
Open Allocation Editor dialog box
Open Mask List editor

Open Socket List editor

Check the current file for errors
Send current program to controller

Send program without initializing variables, when possible

Start Cybro program
Stop Cybro program and turn off all outputs
Pause Cybro program, keep outputs active

Add new network address to the current program
Remove current NAD from the current program
Select current network address for the active program
Connect/Disconnect communication port

Settings related to plc program

Display various controller-related information
Update system software

Online access to plc variables

Identify IEX modules and individual inputs/outputs
Initialize all variables, including retentive

Send program to multiple controllers

Erase password protected program

Low-level A-bus communication monitor

Settings related to CyPro environment

Edit window

Edit window is used to type and edit PLC program. Each window is a single function.

Mew Program - 5T: function main:void:

/% initialize =/ A

if first_scan then
cybro_io12_mode:=18; // i012 mode: pulse train output
cybro_qwi2:=18; // pulses per packet
pulse_train_frequency:=28; // output frequency [Hz]
end if;

/+ send one packet per second =/
if fp(clock_1s) then

cybro_qx12:=1;
end_if;

£ >
Ln 26, Col1

Editor uses syntax highlight - variables, constants, functions and other language elements are
displayed in different colors. To customize colors, open Tools/Environment Options/Colors.

Insert identifier (Ctrl-Space) is used to display a list of allocated variables and available functions.

10

Online monitor

Online monitor is designed to display and change controller variables.

Online Monitor

Introduction Online monitor

[+ X A-t +E 295 » n m|G ik Mnitod] -« o
History
I T O O A [B [1| |scan frequency int 9322 Dec
I n e nm WuE 1 |sean_time int 0 Dec
sCan_time_mas int 2| Dec
SCAN_OVEIn bit 0/ Dec
cybra_hardware_id it 101 Dec
cybro_hardware_ermar int 0 Dec
T | | | || evbro_power_supply int 241 Dec
| | | | cybro_temperature int 348 Dec
[11 I 1| | | |cvbro_msg_per_second int 19 Dec
IR RN | |can_lo_vaoltage_level int 2843 Dec
Il P N 11 1| |can_hi_voltage_level int 2846 Dec
e et |ean_rs_msg_per_second int 3|Dec
| | | can_ty_mzg_per_second int 10| Dec
can_rH_enor_counter int 0/ Dec
can_ts_ermor_counter int 0| Dec
Speed: A S0ms (165 total)

To insert new variables use Add button (Insert), select desired variables and press OK. To
rearrange variables, click Move Up / Move Down, or use Ctrl-Up / Ctrl-Down (arrow) keys.

Monitor update rate is 20ms (50 times per second). Scroll rate is 50ms, it can be changed with
Speed slider. First number is time to move a single pixel, second is total time from left to right.

To enter a new value, click Edit selected variables (Alt+Enter), right-click and select Properties, or

double-click the variable.

“arablez reset_counter [long]

Walue

Ul |Dec:

~|

0K

| | Cancel |

Enter value and press OK. Value is sent and immediately read back, monitor always display the
actual value. Multiple variables can be set at once.

To toggle a bit variable, press Space key.

Monitor supports multiple sets. To create a new set click Add new varset, then insert variables. For

a quick access press Alt-1 to Alt-5, or Ctrl-Left / Ctrl-Right (arrow) keys.

11

Introduction § Identify modules

Identify modules

Identify modules is a tool used to identify individual inputs/outputs. Because of change/reset
operation, tool may be used by a single person.

Identify Modules [-[O]
7< Reset

Slot | M arne | Description | NAD | Prefis | GE | |nputs | Outputs: |
@ CPU CyBro-2 CyBro-2, 10 binary inputs, 8 binary outputs 6512 2000 P00 P20 P00 PSP -
BE 1 aP-4 Operatar panel: LCD 2420, encoder, IR ... 158 opll @ PSSP @ 2009 @

BY 2 FC Far-coil controller 193 felD @ @ 2009 P

BE 3 LD Light contraller (D51 /DAL WE O kd) @ PP

BE 4 HR Hatel room controller 1782 hr00 ? P90 PP PP DS PP

BEl 5 oz Two relay outputs with main: senge inputs 156 020 @ @@

[/ 0z Two relay outputs with mains sense inputs 152 o2l e @9 jenker]

BE 7

BE 8

BE 9

BE 10

BE 11

BEl 17 _'I

Each LED represents a single digital input or output. When mouse is positioned over LED, signal
name is shown in the bottom left corner.

Input and output LEDs are defined according to the following table:

LED current level changed
"] 0 no
] 1 no
& 0 yes
& 1 yes

General error (GE) is defined as:

LED description
] module is operating properly
& error, module is not operative

To identify an unknown input:
1. Resetall
2. Press and hold an unknown input for a half second
3. Check the yellow LED

To identify an unknown output:

1. Click LED to toggle the output

12

Multisend

Multisend is tool to update multiple controllers at once.

B Multisend) Tool

Introduction Multisend

Send kernel Send plc program [F I_nit all vars, Start plc
] Ori diferent [l without it bl e Vit I started
Mum Program MAD Status FLC Status

1. Program 1 BER12 Sending kemel 3%
2 Frogram 1 E511
3 Frogram 1 E510
4 Program 2 73168

Current: []

Total []
Check all programs

L Send] [LClose]

All programs and all NAD's are listed.

It is optional to send program either without initialization (only if allocation is not changed), with a
standard initialization (retentive variables are preserved), or with forced initialization (all variables

are initialized, including retentives).

Option Check all programs will verify all programs by reading back and comparing to original.

13

Programming § Hardware

Programming

Hardware

Expansion modules

Cybro is expanded with IEX-2 modules. For the complete list, check hardware manual.

slot 0 slot1 slot2 slot3 slot4 slot5 slot6 slot 47

Each IEX-2 module has unique address, equal to serial number. Autodetect will detect module type,
address, and assign slot number. Slot 0 is reserved for Cybro internal inputs and outputs.

Some modules implement autoaddress feature, used to fit devices into a predefined hardware list.
Hardware setup

To perform automatic detection of connected modules press Autodetect button.

 Hardware Setup

Bf Autodetect 18§ Clear All 18§ Clear Modules 18§ Clear Missing 3¢ Clear + llove Up L Move Down B Properties

Slot Mame Description MAD Prefis Status

& CPU Ukt Cybro-3H 3 binary inputs, 4 relay outputs, 4 universal input/outputs, RS485 port, EnDcean.. 10000 @ 0K A

BEl Slot1 Bio-20 10 relay outputz, 10 digital inputs 44275 hiol0 @ 0K

BEl Slot 2 Bio-20 10 relay outputs, 10 digital inputs 44276 bio @ 0K

BEl Slot 3 AR12 12-channel analog input PHIO0/1000, Mi10041000, R200/2000, 2 or 3-wire 33702 a0 @ 0K

BEl Slot 4 Aov-12 12-channel analog output 0,70 23467 aowD @ 0K

BEl Slot 5 op-2 Operator panel: LCD 2416, 5 keys 18865 opOO @ 0K

BEl SlotE

BE Slot 7

BEl Slot 2

BEl Slot9

BE Slot10

BEl Slot 11 W
| ak | | Cancel |

Dialog shows slot number, module type, short description, communication address, variable prefix
and status.

14

Device properties

Programming { Hardware

To open device properties, double click the module, or click right and select Properties.

CPU Unit

LCPU Unit:
MNAD [A-bus]:

Description:

cybro_iol2_mode:
cybro_iol3_mode:
cybro_iold_mode:

cybro_iol5_mode;

pulze_train_frequence El
pulse_train_ramp_tim EI

Cybro-3 ~

10000

12 binary inputs, 10 relay outputs, 4 universal

input/outputs, Endlcean gateway [optional]

analog input 0. 20mé, ~
analog input 0. 20md, w
temperature sensor ~
ot uzed ~

Alr 4]

clock_1min
clock_10z
clock_1z
clock_100ms
clock_10ms
retentive_fail
SCan_overrun
first_scan
cybro_iv15
cybro_ix14
cybro_ixl3
cybro_ix12
cybro_ix11
cybro_ix10
cybra_ix03
cybro_ix03
cybro_ix07
cybro_ix06
cybro_ix05
cybra_ix04
cybro_ix03
cybro_ix02
cybro_ix01
cybro_ix00

qx

push_meszage_ack
push_meszage_req

analog_filter
disconnect_inputs
tho_wirite_req
ee_write_req

ee read req
cybro_qul5
cybro_g«14
cybro_qul3
cybro_qul2

cybro_gx03
cybro_qu08
cybro_qu07
cybro_qu0E
cybro_qu05
cybro_gx04
cybro_qu03
cybro_qul2
cybro_qgx01
cybro_qu00

i

cybra_hardware_id
cybro_hardware ...
cybro_mag_per_s...
can_hi_voltage_|..
can_lo_voltage_|..
can_ks_emaor_cou...
Car_IW_efmor_cou...

can_ks_msg_per_..
Can_rs_msg_per_...
cybro_power_sup...

cybro_temperature
ee_wite_magic
zcan_frequency
scan_time_max
scan_time
cybra_iwl5
cybro_iwl4
cybro_ivl 3
cybra_iwl2

qu

rhe_year
e_month
re_date
re_weekday
the_hiour
rhe_rin
hc_sec

pulse_train_ramp_...
pulze_train_frequ...
cybro_iol5_mode
cybro_iold_mode
cybro_io13_mode
cybro_iol2_mode
cybro_qwlh
cybro_gqwld
cybro_qwl3
cybro_quwl2

Cancel

Dialog shows automatically assigned i/o variables for the module. Everything device does is
accessable through this variables.

Meodule in Slot 2

Module;

Description:

Default

LC-1040 i

MAD [IEX-2); |44285

HIQ controller for 10 lights, autoaddress 100

autoaddress_active
bus_error
progranm_erraor
timeout_ermar
general_ermar

=03
=08
=07
=06
05
i=04
=03
102
i=01
=00

output_made_req
input_mode_req

q=09
qu0
qull7
qu0E
g5
q=04
qul3
qull2
qx01
qu00

iex_card_id
firmwware_version
buz_emaor_counters
iex_power_supply

output_mode_09
autput_made_08
output_mode_07
output_mode_06
output_maode_05
output_mode_04
output_mode_03
output_mode_02
output_mode_01
autput_made_00

input_made_03
input_mode_(03
input_mode_(07
input_mode_ 06
input_mode_(05
input_made_04
input_mode_03
input_mode_02
input_mode_01
input_mode_00

qw

output_mode_data
output_made_indey

input_rmode_data
input_mode_index

lowa_light_signal

Cancel

Everything is sorted in four columns. X are binary, W are analog (word) variables. | are inputs, Q

are outputs.

15

Programming { Variables

Every module has four status variables (general_error, timeout_error, program_error, bus_error),
shaded gray. When general_error is zero, that means everything is ok, module is fully functional.

Yellow shaded variables are sent on change. When changed, it is sent automatically.

Red shaded variables are sent on request. Each group of four has it's own request. To send the
group, set request to 1.

To get description of each variable, hover mouse over. The description comes from the cym file.

Variables

Naming convention

Variable name may contain letters, digits and underline symbol. First character must not be a digit.
Maximum length is 32 characters. Name is not case sensitive. Special and national characters (C,
a ¢, ,0t,.) ghould rot be used.

Examples of a valid name:

i

caret_position

maximum water _| evel

Name must not match IEC-1131-3 keyword.

Allocation

Variables are allocated using Global Allocation Edit. To insert a new variable, choose group and
click New Variable.

Global Allocation Edit

& New Variable M Rename 3¢ Delete | % Cut Copy [, Paste | + MoveUp 4 Move Down Properties
Groups: ‘Wariables:
User Wariables || Mame Type Aftributes Description
g Lights global_toggle_request Request to toggle fied output [-1-idle, 0..55-0utput number).
Dgemote global_blink_request int Fequest to blink specified output a few times [-1-idle, 0..55-output n
= Hcene global_zcene_request int Global request to et a scene [-1-idle. 0..31-zcene number].
= T_\fac " global_scene_nao_inverse bit ‘w'hen processing global scene request. don't apply inverse scene. L
= leeta = global_scene_no_resend it “When processing global scene request, don't send back to network.
= L'esf_nie global_memony_request int Global request to memarize scene [-1-idle, 0..31-scene number). Only
[:IADW = _t presence_indicator bit Indic:ate that tenants are at home [0-no, 1-pes). Calculated using all ¢
utomation lov_light_indicator bit Indicator that lightness level is low, 20 automatic lights are allowed tc
4
arm]
< > < >
| Add group | | Rename group| | Delete group] I | Cancel
Basic data types

type size range

bit 1 bit 0.1

int 16 bits -32768..32767

long 32 bits -2147483648..2147483647

. 38 4,38
real 32 bits -17.1

Bit is a single boolean variable with only two possible states, zero or one. It is used for flags, logical
equations, logical states and other. The result of comparison instruction is also bit type.

Int is a 16-bit signed number. It is used for counting, encoding states, fixed point arithmetic and
similar.

16

Programming { Variables

Long is a 32-bit signed value. It is used when numbers outside of 16-bit range may occur.
Processing speed is the same as for the 16-bit integers, but they use more memory.

Real is a floating point number. Float consist of 8-bit exponent and 24-bit mantissa, so the result
has 5 to 6 significant digits.

Other data types

In bit, out bit, in word and out word variables represent physically connected binary (bit) and analog
(integer) signals. In bit and out bit are bit type. In word and out word are integer type.

Timer is a structured data type, consisting of a several dedicated fields.

Constant is used to represent a value that will never be changed. For example, Pi=3.141592 can be
defined for trigonometrical calculations. Constants are replaced in preprocessing, data type does
not apply.

Retentive variables

Retentive variables retain their value when power supply goes down, and also when PLC is
stopped. To make variable retentive, set the retentive flag in the global allocation dialog.

VYariable Properties - working_hours [x|

T

r

Both retentive and non-retentive variables reside in the same RAM, but retentives are automatically
copied to battery backup RAM.

RAM

PLC program
—>
-

Number of retentive variables is not limited. If needed, the whole PLC memory can be retentive.

Data retention time is specified in Cybro hardware manual. When power is lost for a period longer
than specified, content of retentive memory may be lost.

System bit retentive_fail indicates that retentive memory is damaged or lost. It is set automatically
after power-on, and cleared next time PLC is started.

When allocation is changed, sending program to PLC will clear all variables. If allocation is not
changed, retentives are preserved. To send program without initialization, use Send Without Init.

17

Programming { Variables

EE variables

Variables that must be preserved for a long period without electricity are stored in EEPROM. To
configure this, set "Copy to EE" checkbox.

Wariable Properties - working_hours [x|

=
J¥ | BEtertive: u

4 | = =
r

EE variables resides in RAM memory as all other retentive and non-retentive variables, but they
also have a copy in EEPROM. Because of this, they are used by PLC program the same way as all
other variables, but in addition, reading and writing to EE is available.

EEPROM RAM

ee_read_req
e

ee_write_req PLC program
ee_write_magic
«—

To read all variables from EE to RAM, set bit ee_read_req. Bit will be automatically cleared when
copy is finished. Depending on number of EE variables, copy process may last a few seconds.

To write all variables from RAM to EE, set ee_write_magic to 31415 and set ee_write_req. When
copy is finished, both variables will be cleared. Depending on number of EE variables, write process
may last a few seconds. The purpose of magic is to protect from accidental writing.

Only the whole EE can be read or written, there is no method to read or write a single variable.

EE variables should not be accessed by program during read or write. The operation is finished
when request variable is returned to zero.

EE variables are automatically retrieved on power-up.

Total number of EE variables is limited by physical size of EE memory, specified by hardware
manual. To check memory usage, open PLC Info dialog box, tab PLC Program, Total EE size.

18

Programming { Variables

I/O variables

I/0O variables are used to access physical inputs and outputs. Cybro uses four I/O address spaces,
two binary and two analog. Binary inputs and outputs are allocated respectively, starting from the
ix0 as the first input and gx0 as the first output.

binary inputs binary outputs
1X2047 QX2047
IX2016 slot 31 OX2016 slot 31
1X63 QX63
IX32 slot 1 OX32 slot 1
1X31 QX31
X0 on-board X0 on-board

Analog i/o space has 32 analog inputs and 32 analog outputs for each slot. Slot O is reserved for
Cybro local inputs and outputs. In word and out word variables are both integer type (16 bit signed).

analog inputs analog outputs
:wgg% slot 31 Swggg slot 31
W63 QW63
W32 slot 1 W32 slot 1
I}Q//V%l reserved %V\\//\?Ol reserved

Input and output variables are auto-allocated, their name is in the form:
NnNNxx_varname

where nnn is prefix (e.g. bio for Bio-24), xx is card number (starting from zero) and varname is the
function it performs. For example, operator panel key F is allocated as op00_key f.

Timer
Special structured type, used to determine time interval. To define a new timer variable, open Insert

New Variable dialog box, choose timer type, enter name, adjust preset, type and timer base, then
press OK.

—Preset
day: howr: mir: sec: msec:
= =1 I=| = =
PP Zk S 3k 2
Type Base
% Pulse) Ims = 100ms
= Oredelay f* 10ms 1z

Timer base is a period in which the timer is incremented, time resolution of the timer.

19

Programming { Variables

Timer may be represented as the function block with two inputs and two outputs:

timer
—>in aql—
e
Py
Correspondingly, the timer variable consists of four fields. Each field is an elementary data type.
name direction type description
in input bit input
q output bit output
pt input long preset time
et output long elapsed time

To use timer, the following syntax applies:
<timer name>.<field>
For example, to set the preset of the wash_timer to 15 seconds (assuming the base is 100ms):
wash_timer.pt:=150;
Elapsed time of the wash_timer will start at 0 and increment every 100ms until it reaches 150.
Pulse timer

Timer output is activated immediately after the rising edge of input signal. After the specified time,
the output will go off. Changes of input signal during active pulse do not affect output.

o LT
| |

Typical application is a staircase timer.
On-delay timer

When input is activated, timer starts counting. After specified time output activates and stays high,
until input goes low. Available fields are the same as pulse timer.

N L] |
et —— o — |
Q []

Typical application is a star-delta switch for three-phase motors.

20

Programming] Refresh processing

Counter
Counter type is depreciated and not recognized by compiler.
Visibility
Each variable can be marked as:
User visible across all tools
System visible in tools used by administrators (CybroOpcServer, CybroDataTool)

Hidden not visible outside of CyPro environment

Automatically allocated I/O variables are marked as "System".

Refresh processing

Cybro implements soft refresh processing. In a regular cycle, inputs are sampled immediately
before and outputs are refreshed immediately after the execution of PLC program.

When scan time is very short, inputs and outputs may not refresh in each scan.
When scan time is very long, inputs may update during the scan, to reduce lag.
IEX modules are updated strictly before and after the scan.

Scan overrun

Scan time is defined as a time needed to complete a full program cycle. It consists of system tasks

and PLC program.

system read PLC program write
tasks inputs oo outputs
|
scan time

When scan time exceeds 100ms, controller goes into scan overrun error and stops program
execution (current scan will be finished). Error code is displayed on the status bar. To disable this
feature, uncheck Scan overrun stops program in Configuration options dialog box.

When scan time exceeds 250ms, program will be interrupted by hardware watchdog, regardless of

overrun settings. When this happens 10 times in a row, program will be stopped with repetitive reset
error.

21

Programming] Refresh processing

Structured text

Structured text is a high level language similar to Pascal, specifically developed for industrial
applications.

Assignment
Assignment is used to store value in a variable. An assignment statement has the following format:
variable := expression;
The assigned value should be lower or equal data type than the variable.
Expressions
Expressions are used to calculate a value, derived from other variables and constants. Expression
may use one or more constants, variables, operators or functions. Using expressions, Cybro can
perform complex arithmetic operations, including nested parentheses and mixed data types.
Examples:
y_position:=5;
down_timer.pt:=15000;
case_counter:=case_co unter+1;

start:=(oil_press and steam an d pump) and not emergency_stop;
valid_value:=(value = 0) or ((value > 10) and (value <= 60));

Operators

Cybro supports a number of arithmetic and logical operators, listed in the following table:

operator | alias | unary | binary | function | bit int long | real result
+ A A A A same
- A A A A A same
* A A A A same
/ A A A A same
mod % A A A same
not ! A A A A A same
and & A A A A same
or | A A A A same
Xor A A A A same
shl, shr A A A same
rol, ror A A A same
= == A A A A A bit
<> I= A A A A A bit
<, <= A A A A bit
> >= A A A A bit
= A A A A A same

Expression evaluation

Expressions are evaluated in a particular order depending on precedence of the operators and
other sub-expressions. Parenthesized expressions have the highest precedence. Top precedence
operators are evaluated first, followed by lower precedence. Operators of the same precedence are
evaluated left to right.

22

Programming] Refresh processing

Consider the following example:

Speedl =3 0.0;
Speed2 :=4 0.0;
Press :=5 0.0;
Rate := Speed1/10 + Speed2/1 0 - (Press+ 4)/9;

In this example, evaluation order is:

Rate :=30.0/10 + 40.0/10 - (50.0+4)/9
Rate :=3.0 +4.0 - 54.0/9
Rate :=3.0 +4.0 - 6.0

Rate :=1.0

Evaluation order can be changed using parentheses:

Speed1 := 30.0;

Speed? = 40.0;

Press :=50.0;

Rate = Speedl/10 + Speed2/(10 - (Press+ 4)/9);

In this example, evaluation order is:

Rate :=30.0/10 + 40.0/(10 - (50.0+4)/9)
Rate :=30.0/10 + 40.0/(10 - 54.0/9)
Rate :=3.0 +40.0/(10 - 6.0)

Rate :=3.0 +40.0/4.0
Rate :=3.0 +10.0
Rate :=13.0

Type conversion
Lower-to-higher data type conversion is performed automatically:
bit- int- long- real
In the following example, multiple of implicit conversions are performed:

real0 := (reall >real2) intl +londl;

real real
b‘lt = int
b |
int D ong
real o long
real

If both arguments are integer, result of operation is also integer, no matter where it is assigned.

=25
r:=i/10; // re sult is r=2

To get the expected result, constant can be written as 10.0:

i:=25 ;
r:=i/10.0; // result is r=2.5

Same result can be obtained by using the cast operator:

i:=25
r:=real(i)/10; // result is r=2.5

23

Programming 1 Refresh processing

Multiline expressions

In a multiline expression, each line must end with an operator:

Flow control
This commands define order in which program statements are executed.

if..then..else

Conditionally execute one or another block of statements:

Example:

case..of

Conditionally execute one of multiple statements. It consists of an selector and a list of statements,
each preceded by a constant. Selector type must be ordinal (boolean, integer or long).

Example:

24

Programming] Refresh processing

for..do

The for...do construction allows a set of statements to be repeated specified number of times.
Counting variable is incremented by 1 at the end of the loop.

fo r <var>:=<expression> to <expression> do
<statements>;
end_for;

The statements within the loop must not contain fp or fn instructions.
Example:
for i:=0 to 19 do
channel[i]:=TRUE;
end_for;

while..do

The while...do construction allows one or more statements to be repeatedly executed while
particular boolean expression is true. The expression is tested prior to executing the statements.
When if becomes false, statements are skipped and the execution continues after the loop.

while <expression> do
<statements>;
end_while;

The statements within the loop must not contain fp or fn instructions.
Example:
while value<(max_value -10) do
value:=value+position;
end_while;

Return value

Structured text function may return a single value of one of the basic types (bit, int, long, real).
Return value is defined by the following expression:

result := expression;

Variable result is automatically declared when function is configured to return a value (function
properties). Data type is the same as the type returned by function. Within a function, result may be
used more then once:

if a<=b then
result:=a;

else
result:=b;

end_if;

25

Operator panel § General

Operator panel

General

Operator panel is the optional external device connected to the Cybro via the IEX-2 bus. OP
provides LCD display and a few keys readable from the PLC program.

OP has to be defined in the Hardware Setup dialog box. Configuration is saved within project.

=
ﬁ Autodetect P Clear m Clear 8l + MoveUp 4 Move Down @ Properties

Slat | Mame | Description | MNAD |A
R CPU Urit CyBro-2 CyBro-2, 10 binary inputs, 8 binary outputs 004000

Slat 1 FC Fan-coil contraller 00000
Slot 2 B, 5 keps 000041

2 Operatar panel: LCD 2
B8 Slat 3
B Slat 4 -

To program operator panel, the following tools are available:

Print functions Structured text functions typed in the PLC program. Used to display strings

and values.
OP keys Bit variables readable from PLC program, represent current key state.
Masks Visual tool for programming operator panel, used to enter parameters.

Capable of entering integer values, decimal values and values represented
by strings. Parameters may be hierarchically organized.

Print functions
Print functions are structured text functions used to display text messages and values.
First parameter is slot number where display appears in the hardware setup. Two following

parameters of all functions are x and y coordinates. They are used to set display position. Print
origin is in the upper left corner.

0,0 15,0
He|lllio, wolrilld!

0123/4/5/6|7/8/9/0/1/2/345
0,1 15,1

Printing outside visible range may produce unexpected results.
Print functions are:

dclr(slotiint);
Clear the whole display (fill with spaces).

dprnc(slot:int, x:int, y:int, c:char);

Print single ASCII character on specified coordinates. Character may be entered directly ('A"), as
ASCII constant (65), or as integer variable. Values from 0 to 255 are allowed.

dprns(slot:int , x:int, y:int , stristring);

Print a string of characters, enclosed in single quotes.
26

Operator panel § OP keys

dprnb(slot:int, x:int, y:int, cO:char, cl:char, value:bit);

Print first or second ASCII character, depending on bit value. If value is false, the first character is
printed, otherwise the second.

dprni(slot:int, x:int, y:int, w:int, zb:bit, value:int);
Print integer value to specified coordinates. Parameter w defines width. For example, if w is 4, print
range is -999 to 9999. Parameter zb is zero blanking. If zb is 1, leading zeroes are replaced with
spaces.

dprnl(slot:int, x:int, y:int, w:int, zb:bit, value:long);
Print long value to specified coordinates. Parameter w defines width. For example, if w is 6, print
range is -99999 to 999999. Parameter zb is zero blanking. If zb is 1, leading zeroes are replaced
with spaces.

dprnr(slot:int, x:int, y:int, w:int, dec:int, value:real);
Print real value to specified coordinates. Parameter w defines width, parameter dec defines number
of decimals. For example, if wis 6 and dec is 2, print range is -99.99 to 999.99. Zero blanking is

always on.

Each parameter (except string in dprns) may be constant, variable or expression.

OP keys

OP keys are accessible from PLC program as input variables:

o P-2 -

key_up key e
key p key_dn key f

Key P is usually used to invoke and exit mask, so it's not available for PLC program (reading is
zero). However, if no entry point is defined, it behaves the same as other keys. In such case, mask
may be invoked by writing mask number to opO0_next_mask.

When mask is active, up, dn and e are not available (readout is zero). Key F is always available.
Key variable is true as long as the key is pressed. When key is released, it becomes false.

Any two (or more) keys may be pressed simultaneously. This may be used to initiate a special
function. In the following example, pressing up and down simultaneously resets product_count.

if fp(op00_key up and op00_key_dn) then
product_count:=0;
end_if;

Variables are allocated automatically when OP is defined in Hardware Setup.

27

Mask

Operator panel Mask

Mask is visual tool for creating a query with operator terminal. More precisely, mask is a container
for a variable to be edited. Masks are transferred to the Cybro together with PLC code.

User creates a new mask or edits the existing one by using Mask Editor. Created masks are listed
in the Mask List. Masks are integral part of the PLC project, they are saved on the disc and

transferred to the Cybro.

Mask Editor

i
o =

Mask List

PLC project

| L e
pown [oF o
= e
O e - i

= 3 L e
e
—— ::@FgFg
i = |

CyBro-2

When user presses P, Cybro sends first mask to the OP. Pressing E advances it to the next mask.

Using branching, masks can be hierarchically organized:

Entry point ! P

mask01l

Next mask JL E

mask02

Next mask JL E

Entry point ! P

mask0l
Branching 1
<& L N4
mask02 mask04 mask06
de e e
mask03 mask05 mask07

[exit] QL E

[exit] J E

[exit] 4; E

28

Operator panel Mask

To start working with masks, press Masks button or F7. Mask List dialog box will appear.

== Mask List [_ O] x|
+ add Duplicate 3¢ Delste @ Edit T ove Up 4 Move Down ‘Entry paink: M0 - Timeout: &0 sec -
Num | Mame Y ariable ‘ Caption | Unit ‘ tdenu ‘ Mext ‘ Escape | Branches ‘ Size | Display ‘

select Select el el g 958 OF-2
oz PO pid_gain 3 no P1 [exit] [1] a0 0Op-2
0z Pl pid_ti T 3 ho P2 [enit] 0 80 OP-2
04, P2 pid_td Td: H no MO [exit] 1] 80 0OpP-2
05, co input_type Input: yes C1 [ewit] o 106 0OP-2
8.] output_type Output: = cz [exit] i} 106 0OF-2
0v. c2 regulation Rea: = Cc3 [exit] 1] 112 0P-2
08 C3 reg_cycle Cycle k3 no M0 [ewit] o 80 0OF-2
09. T0 pazsword Pazzwond: no M0 [ewit] 1 594 0OF-2
10. T1 test_mode Test = T [exit] 1 104 0OPF-2

el

To create a new mask click Add or press Insert key. Mask Editor dialog box will appear.

New Mask

Appearance |Variable| Menu | Elanching'

Mame: |maskD1 Display: IDF"4 d

Mgt mask: [exit] —1 [Field posiion:

e - - m

‘width: Enabled:

. I A
LCaption field text: J Caption: lg_j |1_j Fﬁ
Unit field text: I— - Edit figld: lTj |1_j IS_ﬂ
W unittie [1i3 [=
- EBargraph lﬂ—j ln—jl IF:II

Cancel

EUREURCY

Name is a unique string identifier that identifies a particular mask.
Next mask defines a mask that becomes active after E key is pressed.

Escape mask defines a mask that becomes active after P key is pressed. Usually, this key is used
to exit from mask.

Caption field is a short string that will appear on the display to identify the currently edited variable.
Caption position is represented by the yellow rectangle. To move the caption, drag the rectangle
into the desired position. To resize caption, drag the right edge of the rectangle.

Edit field is a display area in which the value of edited variable is displayed. It is represented by the
red rectangle. Edit field should have enough space for editing variable in the desired range. To
move and resize field, drag it like the caption.

Unit field is a short string, similar to caption. Unit field is represented with green rectangle, and it is
commonly used for displaying engineering units.

Bargraph is a semi-graphic horizontal progress bar. Few different styles are available. To use
bargraph, both low and high limits should be defined.

29

New Mask

Appearance Warable |Menu | Elanchmg'

“Wariable; I\ Browze

Lo firnit:
Hi lirwit:
Step:

Decimal places:

IU
100
=
[=
=
[o =
I Enter required
™ Jumpion first press

Cancel

Lo limit and Hi limit define allowed range.

Operator panel § Mask

Step defines a value for which the variable will be changed for a single key press.

Decimal places may be used for real as well as for integer and long variables. In the former case,

only the display is fractional (e.g. for decimal places=1, value 254 is shown as 25.4).

Enter required and Jump on first press define method to operate with navigation keys (P, E). Three
combinations are available:

Enter required: no

escape mask

Enter required: yes
Jump on first press: no

escape mask

Enter required: yes
Jump on first press: yes

escape mask

If enter required is false, changed value will be sent to Cybro immediately after up or dn key is
pressed. If enter required is true, changed value will be sent to Cybro only when E key is pressed.

(flashing)

To indicate that change is not confirmed, changed value will flash.

P E
§—— current mask j—— next mask
Ay
P E
§—— current mask —————— next mask
wi TPE
value changed
(flashing)
P E
L3 current mask P next mask
Ay l
P |value changed| E

30

Operator panel § Program handling

Variable may be entered as menu rather than as numerical value. To define menu entries, run
Mask Editor, click Menu tab and Add as many items as needed.

PewMask T k.

Appearancel Wariable Menu |Branching|

¥ Enable menu

Vel | Caption T e I
u Para :

! Conf Edit

2 Test

Delete

Move Up

e

Ifove Do

oK | Cancel |

When executing Cybro program, the display will show items by name, and variable product_type will
take value 0, 1 or 2.

Branching tab provides branching onto different masks according to the entered value. This can be
used to organize parameters into various parameter sets, but also for a password protected
parameters.

PewMask T k.

Appearancel Variablel Menu Eranching |

| Jump to
[alt]

oK I Cancel |

Active mask takes control of all panel keys except the F key, so it is not possible to use them from
Cybr o program at the same ti me. Mask fields are dis
mask, display content is restored.

If mask is too large to fit into operator panel it will not be activated, and it will operate like an empty
mask. Mask size is displayed in Mask List dialog box. Available operator panel mask memory is
displayed in the Hardware Setup dialog box. To decrease mask size reduce number of menu
entries or reduce edit field width. Reducing caption and unit field width may also save few bytes.

Only one mask can be active at the time.

Program handling

Cybro program can get currently active mask number by reading variable current_mask. When
current_mask is zero, no mask is active.

Program may force execution of a certain mask by writing to variable next_mask. After the mask is
sent, next_mask is set to -1, and current_mask changes accordingly.

31

Operator panel I Program handling

The following example shows mask handling process:

mask03 mask04
I = I =
Eoeom BEEmEEm

CyBro sends
mask04 to
operator panel

operator panel
sends a request
for a new mask

Table shows approximate timings and values for the transition:

1 2 3 4
v \4 \4 v
mask03 variable 20 20 P 25 25 25
current_mask 3 3 3 0 » 4
next_mask -1 -1 -1 P 4 -1
2-3ms 2-3ms 50-100ms

Events are marked by black arrows:

Enter is pressed

Value is sent to Cybro

Request for new mask is sent to Cybro

New mask sent to operator panel and activated

poONME

Red arrows mark value change.
The same transition may be initiated with the following plc program:
if <condition> then
op00_next_mask:=4;

end_if;

Short gap in current_mask value comes from the network response time. To check if there is an
active mask, program should also check the value of next_mask, like the following example:

if op00_current_mask=0 and op00_next_mask= -1 then
op00_next_mask:=10;
end_if;

Both mask control variables may also be accessed remotely, using the A-bus.

32

Serial interface { Features

Serial interface

Features

Cybro controller feature multiple communication ports.

A-bus A-bus Modbus | Modbus

e STl slave socket master slave TEE i
. PLC
COM1 | RS232 serial port yes - program yes yes
. PLC
COM2 | RS232 serial port yes - program yes yes
COM3/ | RS485 serial port or
- - - - yes

ENO EnOcean wireless

REM free programmable)))) yes
wireless interface

IEX expansion

CAN yes - - - -
modules

ETH Ethernet interface, s s PLC s s
TCPI/IP protocol Y Y program Y Y

COM1, COM2, CAN and ETH ports are available on each device. COM3, ENO and RFM are
optional, available on some hardware models, or when the corresponding order option is selected.

Operation mode, baudrate and port parameters are configured at design time, it's not possible to
change them while the program is running.

A-bus is native, proprietary protocol, used for sending and monitoring PLC program, reading PLC
variables by name (symbolic access) and exchanging data between controllers (socket interface).
More details about A-bus in the Networking section.

COMa3 port is available in Cybro-3H v2 model, with RS485 interface.

ENO interface is used by EnOcean gateway, full featured implementation using Cybro as controller
and Mini Scada as user interface. ENO and COMS3 are mutually exclusive, they can't exist on the
same device.

RFM interface is used to talk with WD-1 DALI wireless bridge, WM-1 serial wireless bridge and
other Cybro controllers with RFM option. It uses the standard 868MHz ISM band to deliver custom-

made messages.

Free programmable means that interface can be used in PLC program, opening possibility for a
range of new protocols.

33

Serial interface § Free-programmable mode

Free-programmable mode

With this feature, a wide range of devices can be controlled: sensors, scales, modems, radio links,
printers and other. Protocol is implemented using the PLC program. Both wired and wireless
devices are supported.

7

RS232 and ETH communication ports are full duplex. RS485, ENO and RFM ports are half duplex.
Both master and slave operation are possible.

Each port has a fully separate transmit and receive buffer. Size of each buffer is 1042 bytes. That
allows for 1024 bytes payload and a few additional bytes for header and redundancy check.

Select port
com_select(port: int);
Select must be executed before other communication commands. Available ports are:
1- COM1, RS232 serial port
2 - COM2, RS232 serial port
3 - COM3, RS485 serial port or EnOcean wireless
4 - RFM, free programmable wireless interface
5 - ETH, Ethernet interface
The best position for com_select() is at the beginning of code section which implements the
protocol. Function can be executed in each scan, it just changes the pointer, with no effect on
current receive and transmit operations.
Create message
Binary messages are created by writing byte by byte to the transmit buffer.
tx_bufwr(pos:int, data:int);
Write data byte to transmit buffer. Position is 0 to 1041, value is 0 to 255.
tx_bufrd(pos:int):int;

Read data byte from transmit buffer. Position is 0 to 1041, value is 0 to 255.

ASCII messages are created with display print commands. Slot number is zero, x coordinate is
buffer position, y coordinate is ignored. Output goes to the selected transmit buffer.

dclr(0);

Fill both receive and transmit buffer with zeros.

34

Serial interface § Free-programmable mode

dprnc(0, x:int, 0, c:char);

Write a single character on position x (same as tx_bufwr()).
dprns(0, x:int, O, str:string);

Write string enclosed in single quotes.

Special characters are entered as two or three-character combination. First character is backslash

('\"), others are:

combination ASCII code hex code
\n CR LF 0D 0A
\r CR 0D
\t TAB 09
\\ \ 5C
\XX any XX

The last combination is used to enter a hexadecimal code 00 to FF, e.g. \41' is the letter 'A'.
dprnb(0, x:int, 0, cO:char, cl:char, value:bit);

Write a single character, cO or c1, depending on the bit value.
dprni(0, x:int, 0, w:int, zb:bit, value:int);

Write 16-bit signed integer as ASCII decimal number. Parameter w is width, zb is zero blanking.
dprnl(slot:int, x:int, y:int, w:int, zb:bit, value:long);

Write 32-bit signed long as ASCII decimal number. Parameter w is width, zb is zero blanking.

dprnr(slot:int, x:int, y:int, w:int, dec:int, value:real);

Write floating point value as ASCII number with decimals. Parameter w is total width, including
decimal point and decimals. Parameter dec is number of decimals. Zero blanking is always on.

Send message
tx_start(size :int);

Send the prepared message. Parameter size is number of characters to transmit. Transmission
starts from the beginning of the buffer (except the ETH port).

tx_active():bit;
Check whether the transmitter is active: 0-no, 1-yes.
tx_count():int;

Return number of characters left to send. When tx_count() is zero and tx_active() is true, the last
character is transmitting.

tx_stop();

Stop transmitter at any time. Current character will be finished, but the rest of the message is not
transmitted.

35

Serial interface § Free-programmable mode

Start receiver

rx_start(beg_ch:char, end_ch:char, len:int, beg_tout :int, end_tout :i nt);
Start receiving and define condition to stop.
beg_ch - first character of received message. When receiving is started, all characters are ignored,
until the specified character is received. The character is written in the zero position of the receive
buffer. To receive message with no specific start character, set to zero.
end_ch - last character of received message. When specified character is received, receiver is
stopped (status 2). Character is written as the last byte of the received message. To receive

message with no specific end character, set to zero.

len - expected length of received message. After the specified number of bytes is received, receiver
is stopped (status 3). To receive a message of variable size, set to zero.

beg_tout - maximum waiting time for the first character, in milliseconds. When timeout is reached,
receiver is stopped (status 4). To receive with no time limit, set to zero.

end_tout - maximum time between consecutive characters, in milliseconds. When timeout is
reached, receiver is stopped (status 4). To receive with no time limit, set to zero.

For example, with 1200 bps, 8 bits and no parity; transmission of a single character takes about
8ms (start bit + 8 data bits + stop bit = 10bits, 10bits/1200bps=8.3ms). In such case, end time is
typically set to about 25ms.

Examples:

rx_start(0,0,0,0,0); // receive continuously
rx_start(0,0,0,0,50); // r eceive unlimit ed time , stop 50ms after the last character
rx_start("",' \r,0,0,0); //'r eceive messages starting with :'and e nding with CR

Maximum length of received message is 1042 bytes. When an extra character is received, receiver
is restarted, the number of received characters start again from zero.

Receiver and transmitter are fully independent.
rx_stop();
Stop receiving immediately (status 1).
rx_count():int;
Returns number of received characters. Function rx_start() reset number of characters to zero.
rx_active():bit;
Check whether the receiver is active: 0-no, 1-yes.
rx_status():int;
Returns receiver status:
0 - receiver active
1 - stopped by command
2 - end character detected

3 - requested size received
4 - timeout expired

36

Serial interface § Free-programmable mode

Parse received message
rx_bufrd(pos:int):int;
Read data byte from receive buffer. Position is 0 to 1041, value is 0 to 255.
rx_bufwr(pos:i nt, data:int);
Write data byte to receive buffer. Position is 0 to 1041, value is 0 to 255.
rx_strcmp(pos :int, str:string):bit;
Compare receive buffer with a specified string. True when string matches, false otherwise.
rx_strpos(pos:int, str:string):in t;

Search for the specified string. Search starts from the given position. If string is found, function
returns position of the first matching character, otherwise it returns -1.

rx_strtoi(pos:int):int;

Read ASCII decimal number at the given position. If character at the specified position is space, it is
skipped until a digit is found. Conversion continues until the first non-digit character.

rx_strtol(pos:int):long;

Read ASCII decimal number at the given position. If character at the specified position is space, it is
skipped until a digit is found. Conversion continues until the first non-digit character.

rx_strtor(pos:int):real;

Read ASCII decimal number at the given position. If character at the specified position is space, it is
skipped until a digit is found. Conversion goes until the first non-numeric character.

Example:

Received message may contain keywords OPEN, CLOSE, AUTO and SET=<value>. Keywords are
sent in no particular order and separated by one or more spaces.

SET=225 OPENAUTO
Program that parses a message according to the specifications:

if rx_strpos(0,'OPEN")<> -1then
main_valve=1;
end_if;

i frx_strpos(0,'CLOSE")<> -1 then
main_valve=0;
end_if;

if rx_strpos(0,'AUTQO")<> -1then
automatic_mode=1;
end_if;

position=rx_strpos(0,' SEE);

if position<> -1 then
setpoint=rx_strtoi(position+4);

end_if;

37

Serial interface § Free-programmable TCP/IP

Free-programmable TCP/IP
Initialize socket

The first command must be com_select(), it directs all consecutive commands to the TCP/IP driver
(5-ETH). With ETH selected, first 10 bytes of communication buffer are reserved for IP header:

Tx buffer
1 1 1 1 1 1 1 | | 1 1
receiver IP dest port reserved message
1 11 21 3 4 1 5 6 1 7 1 8 1 9 | 107 111 1 1040 J 1041
Rx buffer
T T 1 T T T T T T T T
sender IP send port reserved message
1 11 2 1 3 4] 5 6 1 7 1 8 1 9 | 103 111] 1040] 1041

Receiver IP address and port must be written by plc program before the message is sent. Sender
IP address and port are written by system when message is received.

The following command is rx_start(), providing parameters to initialize the TCP/IP socket:
rx_start(protocol:char , dummychar, portint ,autostop: int ,timeout:int);

protocol.... 0-none, 1-UDP, 2-TCP master, 3-TCP slave

port.......... local port through which messages are sent and received
autostop... when active, reply message will close the connection
timeout..... when time runs out [ms], connection is closed; zero to disable

In UDP mode, the controller is ready to receive and transmit UDP messages right away.

In TCP mode, either master (client) or slave (server) operation is selected. When initialized as a
master, Cybro uses receiver address and port to open the connection and send the first message.
When initialized as a slave, Cybro enters listen mode, waiting for connection on the selected port.

To prepare the outgoing message, use tx_bufwr() or display print commands. To send the
message, use tx_start(). Parameter size is the length of the message, without the header. Other
transmit commands are not used.

To check if the message has been received, read the first byte of the buffer using rx_bufrd(). When
result is not zero, message has arrived. The rx_count() returns received size, without the header.
Parsing is the same as with the serial port. When finished, use rx_bufwr() to invalidate the message
and prepare for the next one.

Command rx_status() returns state of the socket:

0 - closed

1- UDP open

2 - TCP initialised
3-TCP listen

4 - TCP connected

When message is transmitted or received, timeout is reloaded and rx_active() is set. When timeout
expires, rx_active() goes to zero.

Command rx_active() returns 1 when connection is extablished (status 4). To close connection at
any time, use rx_stop() command. To close the socket, use rx_start() with protocol set to zero.

Reserved local ports are 53 (DNS), 68 (DHCP), 8442 (A-bus LAN), 20000..29999 (A-bus WAN) and
502 (Modbus slave). Other port numbers are free to use.

38

Serial interface § Free-programmable TCP/IP

UDP mode

User Datagram Protocol (UDP) is a simple connectionless protocol that allow devices to send and
receive messages. Sender destination port must be the same as the receiver local port. Message
can be sent to multiple recipients using the subnet broadcast address.

Tx

OPEN

rx_active=0/1
rx_status=1

CLOSED

rx_status=0

Rx

Once socket is open, use tx_start() to send and rx_bufrd() to detect the received messages.
Although the state is not changed, autostop and timeout can be used by reading rx_active().

TCP master

Transmission Control Protocol (TCP) is a connection-oriented protocol and requires handshaking to
start communication. Once a connection is established, data can be sent. In master mode,
connection is established when controller sends a message to the slave device.

tx_start() Rx

CONNECT

rx_active=1
rx_status=4

rx_start()

INIT

rx_active=0
rx_status=2

CLOSED

rx_status=0
autostop, timeout or rx_stop() Tx

If autostop is set, connection is closed when message is received. If timeout is set, connection
closes when time runs out. Timer is reloaded with each received and transmitted message. Only
one connection can be opened at a time.

TCP slave

In slave mode, controller is intialized and waiting for a connection.

The message can only be sent when the connection is established. When sending the message,
receiver ip address and port are not used, since connection is already established.

If autostop is set, connection is closed when message is transmitted. If timeout is set, connection
closes when time runs out. Slave timeout should be longer then or equal to the master timeout.
Timer is reloaded with each received and transmitted message. Only one connection can be
opened at a time.

39

