

CyPro User Manual
version 46

applies to CyPro v3.1.0 and later

É 1998-2021 Cybrotech Ltd.

Cybrotech Ltd.
68 St Margarets Road, Edgware
Middlesex HA8 9UU
London, UK
info@cybrotech.com
www.cybrotech.com

info@cybrotech.com
www.cybrotech.com

Index ¶ Installation

3

Index

Index .. 3
Introduction .. 5

Installation ... 5
Communication ... 6
User interface .. 7

Main window ... 7
Standard toolbar ... 7
Program toolbar .. 7
Communication toolbar ... 7
Project tree.. 8
Status bar .. 8
Pull-down menu .. 9
Edit window ... 10

Online monitor ... 11
Identify modules .. 12
Multisend ... 13

Programming ... 14
Hardware ... 14

Expansion modules .. 14
Hardware setup ... 14
Device properties .. 15

Variables ... 16
Naming convention ... 16
Allocation .. 16
Basic data types .. 16
Other data types ... 17
Retentive variables ... 17
EE variables .. 18
I/O variables .. 19
Timer ... 19
Pulse timer .. 20
On-delay timer .. 20
Counter ... 21
Visibility ... 21

Refresh processing ... 21
Scan overrun ... 21

Structured text ... 22
Assignment ... 22
Expressions .. 22
Operators .. 22
Expression evaluation ... 22
Type conversion .. 23
Multiline expressions ... 24
Flow control ... 24
Return value .. 25

Operator panel... 26
General ... 26
Print functions ... 26
OP keys ... 27
Mask .. 28
Program handling .. 31

Serial interface... 33
Features .. 33
Free-programmable mode .. 34

Select port ... 34
Create message ... 34
Send message .. 35
Start receiver ... 36

Index ¶ Installation

4

Parse received message .. 37
Free-programmable TCP/IP .. 38

Initialize socket .. 38
UDP mode .. 39
TCP master ... 39
TCP slave ... 39

Networking... 40
Ethernet connection .. 40
Connection options ... 41

1. Local network connection ... 42
2. Direct connection .. 42
3. Internet connection using known address on Cybro side 42
4. Internet connection using push and known address on PC side 43
5. Internet connection using web scada as a relay ... 43

Ethernet sockets ... 45
1. Periodic 1s .. 46
2. Periodic 10s .. 46
3. On-request .. 46
4. On-change .. 46

Socket examples ... 47
Event-driven action ... 47
Synchronized value ... 47

MODBUS slave ... 48
Additional features ... 49

Real-time clock.. 49
NAD alias .. 50
Password protection .. 51
Command-line options .. 52

Getting started ... 54
Step 1: hardware ... 54
Step 2: variables ... 54
Step 3: write code ... 54
Step 4: run .. 55

Appendix .. 56
Data type summary ... 56

Elementary .. 56
Input/Output .. 56
Timer ... 56
Constants .. 56

Structured text summary ... 57
Operators .. 57
Flow control ... 57
Edge detect ... 58
Type conversion .. 58
Serial ports .. 58
Display functions ... 59
Network functions ... 59
Return value .. 59

Function library .. 60
Instruction list summary .. 61
Operator panel characters .. 63
Keyboard shortcuts ... 64

General ... 64
Text editor ... 64

Introduction ¶ Installation

5

Introduction

Installation

CyPro is integrated development environment for Cybro controllers, with text editor, compiler and
on-line monitor. It's running on Windows 7/8/10 or Linux/Wine.

Each controller has unique 5-digit serial number, also used as communication address (NAD).

Compiler implements structured text (ST) and instruction list (IL) from IEC 61131-3 standard for
programming logical controllers. Other languages are not supported.

Hardware requirements are low, any PC capable of running MS Windows should be sufficient.
Installation uses cca. 40Mb, default directory is C:\Program Files (x86)\Cybrotech\CyPro-3.

Installation does the following:

¶ unpack files into specified directory

¶ create start menu group and icons

¶ create desktop icon (optional)

¶ set association to .cyp file type (optional)

Default project directory is C:\Program Files (x86)\Cybrotech\CyPro-3\Projects. No file is copied to
windows directory, no system files are replaced or changed.

To upgrade CyPro, install a new release into the same directory. User settings will be preserved.
With new CyPro, it is required to also upgrade firmware (kernel). To do this, open Tools/Kernel
Maintenance and send new kernel.

Introduction ¶ Communication

6

Communication

To establish communication with controller in a local network, follow this steps:

¶ File / New

¶ Hardware / Autodetect

Controller can be connected in a several ways:

LAN connection (with router)

USB or serial connection

Direct connection (no router)

Internet connection

For more details, check Networking section.

Introduction ¶ User interface

7

User interface

Main window

CyPro consists of editor, toolbars and status bar. Default screen is shown below:

Each component can be docked or floating. To undock, drag the component by the left vertical line
over the edit area. To dock it again, drag window to main window border.

Standard toolbar

 Create a new empty project

 Open an existing project (Ctrl-O)

 Save current project (Ctrl-S)

 Print current project (Ctrl-P)

 Remove the selection and place it on the clipboard (Ctrl-X)

 Copy the selection onto the clipboard (Ctrl-C)

 Insert the content of the clipboard at the cursor, replacing any selection (Ctrl-V)

Program toolbar

 Open the Hardware Setup dialog box (F5)

 Open the Allocation Editor dialog box (F6)

 Open the Mask List editor (F7)

 Open the Socket List editor (F8)

Communication toolbar

 Send current project to Cybro (F9)

 Open the on-line Variable Monitor (F10)

 Start program (F11)

 Stop program and turn off all outputs (F12)

Introduction ¶ User interface

8

Project tree

Displays project hierarchically.

Right clicking any component opens it's context sensitive pop-up menu. Depending on type, it is
possible to Add, Edit, Delete or change Properties of the selected component.

Status bar

Status bar shows various information about communication and connected Cybro.

System message (left side) show result of the preceding operation.

Project status indicate that current project is not saved. It reflects changes in any part of the project,
such as source, allocation, mask, socket, data manager or monitor list.

IP address shows IP address of connected controller.

A-bus address shows Cybro A-bus address (NAD). Right click to select another or enter a new one.

PLC status shows:

Off-line Cybro is not responding.
Run Cybro is on-line and running.
Stop Cybro is on-line, stopped. Outputs are inactive and program is not executing.
Pause Cybro is on-line, paused. Outputs remain active, but program is not executing.
Error Cybro is on-line, some error occurred. Error codes are listed in the appendix. To

clear the error press Stop.
Loader Cybro is on-line, but system software (kernel) seems to be damaged. Start Kernel

Maintenance and send a new kernel.

Com port status indicates whether communication cable is properly connected:

 OK

 cable not connected

 communication port used by another application

Delay shows roundtrip time, from message sent to message received, in milliseconds.

Communication indicators show activity, green is transmit (Tx), red is receive (Rx).

Introduction ¶ User interface

9

Pull-down menu

File

New Create a new project
Open Open an existing project
Load From PLC Load project from controller
Save Save current project
Save As Save current project under new name

Save alc File Save allocation file in text format
Save csv File Save allocation file in csv format

Printer Setup Set printer options
Print Print current project
Close Close current project
Recent Projects Open recently opened project
Exit Exit program

Edit

Undo Cancel the last action
Redo Cancel the last Undo operation
Cut Delete the selection and put it on the clipboard
Copy Copy the selection onto the clipboard
Paste Insert text from the clipboard to the insertion point
Delete Delete the selection
Select All Select the whole document

Find Find specified text
Find Next Find next occurrence of the specified text
Find Previous Find previous occurrence of the specified text
Replace Find specified text and replace it
Go to Line Number Move insertion point to specified line number

Indent Block Move selected lines right by inserting leading spaces
Unindent Block Move selected lines left by deleting leading spaces
Comment/Uncomment Insert or delete comment ("//") before selected lines
Insert Identifier Display list of functions and global variables

Properties Show properties of the selected project module

View

Project Tree Show Project Tree
Local Allocation Editor Show Local Allocation Editor
Editor Tabs Show Editor Tabs
Compiler Messages Show Compiler Messages

Standard Toolbar Show Standard Toolbar
Program Toolbar Show Program Toolbar
Communication Toolbar Show Communication Toolbar

Project

New Program Create a new program in the current project
New Program From PLC Load program from controller into the current project
Remove Program Remove program from the current project
Properties Show properties of the current project

Introduction ¶ User interface

10

Program

Hardware Setup Open Hardware Setup dialog box
Allocation Editor Open Allocation Editor dialog box
Mask Editor Open Mask List editor
Socket Editor Open Socket List editor

Syntax Check Check the current file for errors
Send Send current program to controller
Send Without Init Send program without initializing variables, when possible
Start PLC Start Cybro program
Stop PLC Stop Cybro program and turn off all outputs
Pause PLC Pause Cybro program, keep outputs active

Add NAD Add new network address to the current program
Remove Current NAD Remove current NAD from the current program
Select NAD Select current network address for the active program
Connect/Disconnect Connect/Disconnect communication port

Configuration Settings related to plc program

Tools

PLC Info Display various controller-related information
Kernel Maintenance Update system software

Online Monitor Online access to plc variables
Identify Modules Identify IEX modules and individual inputs/outputs
Init all variables Initialize all variables, including retentive
Multisend Send program to multiple controllers
Erase Protected Program Erase password protected program
Communication Monitor Low-level A-bus communication monitor

Environment Options Settings related to CyPro environment

Edit window

Edit window is used to type and edit PLC program. Each window is a single function.

Editor uses syntax highlight - variables, constants, functions and other language elements are
displayed in different colors. To customize colors, open Tools/Environment Options/Colors.

Insert identifier (Ctrl-Space) is used to display a list of allocated variables and available functions.

Introduction ¶ Online monitor

11

Online monitor

Online monitor is designed to display and change controller variables.

To insert new variables use Add button (Insert), select desired variables and press OK. To
rearrange variables, click Move Up / Move Down, or use Ctrl-Up / Ctrl-Down (arrow) keys.

Monitor update rate is 20ms (50 times per second). Scroll rate is 50ms, it can be changed with
Speed slider. First number is time to move a single pixel, second is total time from left to right.

To enter a new value, click Edit selected variables (Alt+Enter), right-click and select Properties, or
double-click the variable.

Enter value and press OK. Value is sent and immediately read back, monitor always display the
actual value. Multiple variables can be set at once.

To toggle a bit variable, press Space key.

Monitor supports multiple sets. To create a new set click Add new varset, then insert variables. For
a quick access press Alt-1 to Alt-5, or Ctrl-Left / Ctrl-Right (arrow) keys.

Introduction ¶ Identify modules

12

Identify modules

Identify modules is a tool used to identify individual inputs/outputs. Because of change/reset
operation, tool may be used by a single person.

Each LED represents a single digital input or output. When mouse is positioned over LED, signal
name is shown in the bottom left corner.

Input and output LEDs are defined according to the following table:

LED current level changed

 0 no

 1 no

 0 yes

 1 yes

General error (GE) is defined as:

LED description

 module is operating properly

 error, module is not operative

To identify an unknown input:

1. Reset all
2. Press and hold an unknown input for a half second
3. Check the yellow LED

To identify an unknown output:

1. Click LED to toggle the output

Introduction ¶ Multisend

13

Multisend

Multisend is tool to update multiple controllers at once.

All programs and all NAD's are listed.

It is optional to send program either without initialization (only if allocation is not changed), with a
standard initialization (retentive variables are preserved), or with forced initialization (all variables
are initialized, including retentives).

Option Check all programs will verify all programs by reading back and comparing to original.

Programming ¶ Hardware

14

Programming

Hardware

Expansion modules

Cybro is expanded with IEX-2 modules. For the complete list, check hardware manual.

Each module occupies a single slot. Slot is logical entity, used to address the module.

Each IEX-2 module has unique address, equal to serial number. Autodetect will detect module type,
address, and assign slot number. Slot 0 is reserved for Cybro internal inputs and outputs.

Some modules implement autoaddress feature, used to fit devices into a predefined hardware list.

Hardware setup

To perform automatic detection of connected modules press Autodetect button.

Dialog shows slot number, module type, short description, communication address, variable prefix
and status.

Programming ¶ Hardware

15

Device properties

To open device properties, double click the module, or click right and select Properties.

Dialog shows automatically assigned i/o variables for the module. Everything device does is
accessable through this variables.

Everything is sorted in four columns. X are binary, W are analog (word) variables. I are inputs, Q
are outputs.

Programming ¶ Variables

16

Every module has four status variables (general_error, timeout_error, program_error, bus_error),
shaded gray. When general_error is zero, that means everything is ok, module is fully functional.

Yellow shaded variables are sent on change. When changed, it is sent automatically.

Red shaded variables are sent on request. Each group of four has it's own request. To send the
group, set request to 1.

To get description of each variable, hover mouse over. The description comes from the cym file.

Variables

Naming convention

Variable name may contain letters, digits and underline symbol. First character must not be a digit.
Maximum length is 32 characters. Name is not case sensitive. Special and national characters (Ç,
ª, ¿, ±, ļ, ĺ, ġ, ģ...) should not be used.

Examples of a valid name:

i
caret_position
maximum_water _l evel

Name must not match IEC-1131-3 keyword.

Allocation

Variables are allocated using Global Allocation Edit. To insert a new variable, choose group and
click New Variable.

Basic data types

type size range

bit 1 bit 0..1

int 16 bits -32768..32767

long 32 bits -2147483648..2147483647

real 32 bits -1
38

..1
38

Bit is a single boolean variable with only two possible states, zero or one. It is used for flags, logical
equations, logical states and other. The result of comparison instruction is also bit type.

Int is a 16-bit signed number. It is used for counting, encoding states, fixed point arithmetic and
similar.

Programming ¶ Variables

17

Long is a 32-bit signed value. It is used when numbers outside of 16-bit range may occur.
Processing speed is the same as for the 16-bit integers, but they use more memory.

Real is a floating point number. Float consist of 8-bit exponent and 24-bit mantissa, so the result
has 5 to 6 significant digits.

Other data types

In bit, out bit, in word and out word variables represent physically connected binary (bit) and analog
(integer) signals. In bit and out bit are bit type. In word and out word are integer type.

Timer is a structured data type, consisting of a several dedicated fields.

Constant is used to represent a value that will never be changed. For example, Pi=3.141592 can be
defined for trigonometrical calculations. Constants are replaced in preprocessing, data type does
not apply.

Retentive variables

Retentive variables retain their value when power supply goes down, and also when PLC is
stopped. To make variable retentive, set the retentive flag in the global allocation dialog.

Both retentive and non-retentive variables reside in the same RAM, but retentives are automatically
copied to battery backup RAM.

RAM

PLC program

retentive

Number of retentive variables is not limited. If needed, the whole PLC memory can be retentive.

Data retention time is specified in Cybro hardware manual. When power is lost for a period longer
than specified, content of retentive memory may be lost.

System bit retentive_fail indicates that retentive memory is damaged or lost. It is set automatically
after power-on, and cleared next time PLC is started.

When allocation is changed, sending program to PLC will clear all variables. If allocation is not
changed, retentives are preserved. To send program without initialization, use Send Without Init.

Programming ¶ Variables

18

EE variables

Variables that must be preserved for a long period without electricity are stored in EEPROM. To
configure this, set "Copy to EE" checkbox.

EE variables resides in RAM memory as all other retentive and non-retentive variables, but they
also have a copy in EEPROM. Because of this, they are used by PLC program the same way as all
other variables, but in addition, reading and writing to EE is available.

ee_read_req

ee_write_req
ee_write_magic

RAM

PLC program

EEPROM

To read all variables from EE to RAM, set bit ee_read_req. Bit will be automatically cleared when
copy is finished. Depending on number of EE variables, copy process may last a few seconds.

To write all variables from RAM to EE, set ee_write_magic to 31415 and set ee_write_req. When
copy is finished, both variables will be cleared. Depending on number of EE variables, write process
may last a few seconds. The purpose of magic is to protect from accidental writing.

Only the whole EE can be read or written, there is no method to read or write a single variable.

EE variables should not be accessed by program during read or write. The operation is finished
when request variable is returned to zero.

EE variables are automatically retrieved on power-up.

Total number of EE variables is limited by physical size of EE memory, specified by hardware
manual. To check memory usage, open PLC Info dialog box, tab PLC Program, Total EE size.

Programming ¶ Variables

19

I/O variables

I/O variables are used to access physical inputs and outputs. Cybro uses four I/O address spaces,
two binary and two analog. Binary inputs and outputs are allocated respectively, starting from the
ix0 as the first input and qx0 as the first output.

IX0
on-board

slot 1

slot 31

IX32

IX31

IX63

IX2016

. . .

IX2047

QX0
on-board

slot 1

slot 31

QX32

QX31

QX63

QX2016

. . .

QX2047

binary inputs binary outputs

Analog i/o space has 32 analog inputs and 32 analog outputs for each slot. Slot 0 is reserved for
Cybro local inputs and outputs. In word and out word variables are both integer type (16 bit signed).

IW0 reserved

slot 1

slot 31

IW32

IW31

IW63

IW2016

. . .

IW2047

QW0 reserved

slot 1

slot 31

QW32

QW31

QW63

QW2016

. . .

QW2047

analog inputs analog outputs

Input and output variables are auto-allocated, their name is in the form:

nnnxx_varname

where nnn is prefix (e.g. bio for Bio-24), xx is card number (starting from zero) and varname is the
function it performs. For example, operator panel key F is allocated as op00_key_f.

Timer

Special structured type, used to determine time interval. To define a new timer variable, open Insert
New Variable dialog box, choose timer type, enter name, adjust preset, type and timer base, then
press OK.

Timer base is a period in which the timer is incremented, time resolution of the timer.

Programming ¶ Variables

20

Timer may be represented as the function block with two inputs and two outputs:

timer

in q

pt et

Correspondingly, the timer variable consists of four fields. Each field is an elementary data type.

name direction type description

in input bit input

q output bit output

pt input long preset time

et output long elapsed time

To use timer, the following syntax applies:

 <timer name>.<field>

For example, to set the preset of the wash_timer to 15 seconds (assuming the base is 100ms):

 wash_timer.pt:=150;

Elapsed time of the wash_timer will start at 0 and increment every 100ms until it reaches 150.

Pulse timer

Timer output is activated immediately after the rising edge of input signal. After the specified time,
the output will go off. Changes of input signal during active pulse do not affect output.

T T T

IN

Q

ET

Typical application is a staircase timer.

On-delay timer

When input is activated, timer starts counting. After specified time output activates and stays high,
until input goes low. Available fields are the same as pulse timer.

T T

IN

Q

ET

Typical application is a star-delta switch for three-phase motors.

Programming ¶ Refresh processing

21

Counter

Counter type is depreciated and not recognized by compiler.

Visibility

Each variable can be marked as:

User visible across all tools
System visible in tools used by administrators (CybroOpcServer, CybroDataTool)
Hidden not visible outside of CyPro environment

Automatically allocated I/O variables are marked as "System".

Refresh processing

Cybro implements soft refresh processing. In a regular cycle, inputs are sampled immediately
before and outputs are refreshed immediately after the execution of PLC program.

When scan time is very short, inputs and outputs may not refresh in each scan.

When scan time is very long, inputs may update during the scan, to reduce lag.

IEX modules are updated strictly before and after the scan.

Scan overrun

Scan time is defined as a time needed to complete a full program cycle. It consists of system tasks
and PLC program.

When scan time exceeds 100ms, controller goes into scan overrun error and stops program
execution (current scan will be finished). Error code is displayed on the status bar. To disable this
feature, uncheck Scan overrun stops program in Configuration options dialog box.

When scan time exceeds 250ms, program will be interrupted by hardware watchdog, regardless of
overrun settings. When this happens 10 times in a row, program will be stopped with repetitive reset
error.

Programming ¶ Refresh processing

22

Structured text

Structured text is a high level language similar to Pascal, specifically developed for industrial
applications.

Assignment

Assignment is used to store value in a variable. An assignment statement has the following format:

 variable := expression;

The assigned value should be lower or equal data type than the variable.

Expressions

Expressions are used to calculate a value, derived from other variables and constants. Expression
may use one or more constants, variables, operators or functions. Using expressions, Cybro can
perform complex arithmetic operations, including nested parentheses and mixed data types.

Examples:

 y_position:=5;
 down_timer.pt:=15000;
 case_counter:=case_co unter+1;
 start:=(oil_press and steam an d pump) and not emergency_stop;
 valid_value:=(value = 0) or ((value > 10) and (value <= 60));

Operators

Cybro supports a number of arithmetic and logical operators, listed in the following table:

operator alias unary binary function bit int long real result

+ Å Å Å Å same

- Å Å Å Å Å same

* Å Å Å Å same

/ Å Å Å Å same

mod % Å Å Å same

not ! Å Å Å Å Å same

and & Å Å Å Å same

or | Å Å Å Å same

xor Å Å Å Å same

shl, shr Å Å Å same

rol, ror Å Å Å same

= == Å Å Å Å Å bit

<> != Å Å Å Å Å bit

<, <= Å Å Å Å bit

>, >= Å Å Å Å bit

:= Å Å Å Å Å same

Expression evaluation

Expressions are evaluated in a particular order depending on precedence of the operators and
other sub-expressions. Parenthesized expressions have the highest precedence. Top precedence
operators are evaluated first, followed by lower precedence. Operators of the same precedence are
evaluated left to right.

Programming ¶ Refresh processing

23

Consider the following example:

 Speed1 := 3 0.0;
 Speed2 := 4 0.0;
 Press := 5 0.0;
 Rate := Speed1/10 + Speed2/1 0 - (Press+ 4)/9;

In this example, evaluation order is:

 Rate := 30.0/10 + 40.0/10 - (50.0+4)/9
 Rate := 3.0 + 4.0 - 54.0/9
 Rate := 3.0 + 4.0 - 6.0
 Rate := 1.0

Evaluation order can be changed using parentheses:

 Speed1 := 30.0;
 Speed2 := 40.0;
 Press := 50.0;
 Rate := Speed1/10 + Speed2/(10 - (Press+ 4)/9);

In this example, evaluation order is:

 Rate := 30.0/10 + 40.0/(10 - (50.0+4)/9)
 Rate := 30.0/10 + 40.0/(10 - 54.0/9)
 Rate := 3.0 + 40.0/(10 - 6.0)
 Rate := 3.0 + 40.0/4.0
 Rate := 3.0 + 10.0
 Rate := 13.0

Type conversion

Lower-to-higher data type conversion is performed automatically:

bit ­ int ­ long ­ real

In the following example, multiple of implicit conversions are performed:

real0 := (real1 > real2) int1 + long1;*
real

real

bit

int

real

long

real

int

long

If both arguments are integer, result of operation is also integer, no matter where it is assigned.

 i := 25 ;
 r := i/10; // re sult is r=2

To get the expected result, constant can be written as 10.0:

 i := 25 ;
 r := i/10.0; // result is r=2.5

Same result can be obtained by using the cast operator:

 i := 25 ;
 r := real(i)/10; // result is r=2.5

Programming ¶ Refresh processing

24

Multiline expressions

In a multiline expression, each line must end with an operator:

 heater_on := (heater_temperature < 600) and
 (((mode = MANUAL) and start_pressed) or
 ((mode = AUTO) and heater_request));

Flow control

This commands define order in which program statements are executed.

if..then..else

Conditionally execute one or another block of statements:

 if <expression> then
 <statements>;
 elsif <expression> then
 <statements>;
 else
 <statements>;
 end_if;

Example:

 if a> (2* b) then
 d:=3 ;
 elsif a> b then
 d:= 2;
 elsif a=b then
 d:= 1;
 else
 d:=0 ;
 end_if;

case..of

Conditionally execute one of multiple statements. It consists of an selector and a list of statements,
each preceded by a constant. Selector type must be ordinal (boolean, integer or long).

 case <expression> of
 <value >: <statements>;
 <value>: <statements>;
 <value>: <statements>;
 else
 <statements>;
 end_case;

Example:

 case material_type of
 1: speed:=5;
 2: speed:=20;
 fan:=ON;
 3: speed:=4 0;
 fan:=ON;
 cooling :=ON;
 else
 speed:=0;
 end_case;

Programming ¶ Refresh processing

25

for..do

The for...do construction allows a set of statements to be repeated specified number of times.
Counting variable is incremented by 1 at the end of the loop.

 fo r <var>:=<expression> to <expression> do
 <statements>;
 end_for;

The statements within the loop must not contain fp or fn instructions.

Example:

 for i:=0 to 19 do
 channel[i]:=TRUE;
 end_for;

while..do

The while...do construction allows one or more statements to be repeatedly executed while
particular boolean expression is true. The expression is tested prior to executing the statements.
When if becomes false, statements are skipped and the execution continues after the loop.

 while <expression> do
 <statements>;
 end_while;

The statements within the loop must not contain fp or fn instructions.

Example:

 while value<(max_value - 10) do
 value:=value+position;
 end_while;

Return value

Structured text function may return a single value of one of the basic types (bit, int, long, real).
Return value is defined by the following expression:

 result := expression;

Variable result is automatically declared when function is configured to return a value (function
properties). Data type is the same as the type returned by function. Within a function, result may be
used more then once:

 if a<=b then
 result:=a;
 else
 result:=b;
 end_if;

Operator panel ¶ General

26

Operator panel

General

Operator panel is the optional external device connected to the Cybro via the IEX-2 bus. OP
provides LCD display and a few keys readable from the PLC program.

OP has to be defined in the Hardware Setup dialog box. Configuration is saved within project.

To program operator panel, the following tools are available:

Print functions Structured text functions typed in the PLC program. Used to display strings
and values.

OP keys Bit variables readable from PLC program, represent current key state.

Masks Visual tool for programming operator panel, used to enter parameters.
Capable of entering integer values, decimal values and values represented
by strings. Parameters may be hierarchically organized.

Print functions

Print functions are structured text functions used to display text messages and values.

First parameter is slot number where display appears in the hardware setup. Two following
parameters of all functions are x and y coordinates. They are used to set display position. Print
origin is in the upper left corner.

Printing outside visible range may produce unexpected results.

Print functions are:

 dclr(slot:int);

Clear the whole display (fill with spaces).

 dprnc(slot:int, x:int, y:int, c:char);

Print single ASCII character on specified coordinates. Character may be entered directly ('A'), as
ASCII constant (65), or as integer variable. Values from 0 to 255 are allowed.

 dprns(slot:int , x:int, y:int , str:string);

Print a string of characters, enclosed in single quotes.

Operator panel ¶ OP keys

27

 dprnb(slot:int, x:int, y:int, c0:char, c1:char, value:bit);

Print first or second ASCII character, depending on bit value. If value is false, the first character is
printed, otherwise the second.

 dprni(slot:int, x:int, y:int, w:int, zb:bit, value:int);

Print integer value to specified coordinates. Parameter w defines width. For example, if w is 4, print
range is -999 to 9999. Parameter zb is zero blanking. If zb is 1, leading zeroes are replaced with
spaces.

 dprnl(slot:int, x:int, y:int, w:int, zb:bit, value:long);

Print long value to specified coordinates. Parameter w defines width. For example, if w is 6, print
range is -99999 to 999999. Parameter zb is zero blanking. If zb is 1, leading zeroes are replaced
with spaces.

 dprnr(slot:int, x:int, y:int, w:int, dec:int, value:real);

Print real value to specified coordinates. Parameter w defines width, parameter dec defines number
of decimals. For example, if w is 6 and dec is 2, print range is -99.99 to 999.99. Zero blanking is
always on.

Each parameter (except string in dprns) may be constant, variable or expression.

OP keys

OP keys are accessible from PLC program as input variables:

Key P is usually used to invoke and exit mask, so it's not available for PLC program (reading is
zero). However, if no entry point is defined, it behaves the same as other keys. In such case, mask
may be invoked by writing mask number to op00_next_mask.

When mask is active, up, dn and e are not available (readout is zero). Key F is always available.

Key variable is true as long as the key is pressed. When key is released, it becomes false.

Any two (or more) keys may be pressed simultaneously. This may be used to initiate a special
function. In the following example, pressing up and down simultaneously resets product_count.

 if fp(op00_key_up and op00_key_dn) then
 product_count:=0;
 end_if;

Variables are allocated automatically when OP is defined in Hardware Setup.

Operator panel ¶ Mask

28

Mask

Mask is visual tool for creating a query with operator terminal. More precisely, mask is a container
for a variable to be edited. Masks are transferred to the Cybro together with PLC code.

User creates a new mask or edits the existing one by using Mask Editor. Created masks are listed
in the Mask List. Masks are integral part of the PLC project, they are saved on the disc and
transferred to the Cybro.

PLC project

Mask Editor

Mask List
CyBro-2

When user presses P, Cybro sends first mask to the OP. Pressing E advances it to the next mask.

Entry point

Next mask

Next mask

[exit]

P

E

E

E

mask01

mask02

mask03

Using branching, masks can be hierarchically organized:

Entry point

Branching

[exit] [exit][exit]

P

E

E EE

E EE

mask01

mask04 mask06mask02

mask05 mask07mask03

Operator panel ¶ Mask

29

To start working with masks, press Masks button or F7. Mask List dialog box will appear.

To create a new mask click Add or press Insert key. Mask Editor dialog box will appear.

Name is a unique string identifier that identifies a particular mask.

Next mask defines a mask that becomes active after E key is pressed.

Escape mask defines a mask that becomes active after P key is pressed. Usually, this key is used
to exit from mask.

Caption field is a short string that will appear on the display to identify the currently edited variable.
Caption position is represented by the yellow rectangle. To move the caption, drag the rectangle
into the desired position. To resize caption, drag the right edge of the rectangle.

Edit field is a display area in which the value of edited variable is displayed. It is represented by the
red rectangle. Edit field should have enough space for editing variable in the desired range. To
move and resize field, drag it like the caption.

Unit field is a short string, similar to caption. Unit field is represented with green rectangle, and it is
commonly used for displaying engineering units.

Bargraph is a semi-graphic horizontal progress bar. Few different styles are available. To use
bargraph, both low and high limits should be defined.

Operator panel ¶ Mask

30

Lo limit and Hi limit define allowed range.

Step defines a value for which the variable will be changed for a single key press.

Decimal places may be used for real as well as for integer and long variables. In the former case,
only the display is fractional (e.g. for decimal places=1, value 254 is shown as 25.4).

Enter required and Jump on first press define method to operate with navigation keys (P, E). Three
combinations are available:

Enter required: no

P E
next maskescape mask current mask

Enter required: yes
Jump on first press: no

P

PE

E
next maskescape mask current mask

value changed
(flashing)

Enter required: yes
Jump on first press: yes

P

P

E

E

next maskescape mask current mask

value changed
(flashing)

If enter required is false, changed value will be sent to Cybro immediately after up or dn key is
pressed. If enter required is true, changed value will be sent to Cybro only when E key is pressed.
To indicate that change is not confirmed, changed value will flash.

Operator panel ¶ Program handling

31

Variable may be entered as menu rather than as numerical value. To define menu entries, run
Mask Editor, click Menu tab and Add as many items as needed.

When executing Cybro program, the display will show items by name, and variable product_type will
take value 0, 1 or 2.

Branching tab provides branching onto different masks according to the entered value. This can be
used to organize parameters into various parameter sets, but also for a password protected
parameters.

Active mask takes control of all panel keys except the F key, so it is not possible to use them from
Cybro program at the same time. Mask fields are displayed ñoverò the user display. After exiting
mask, display content is restored.

If mask is too large to fit into operator panel it will not be activated, and it will operate like an empty
mask. Mask size is displayed in Mask List dialog box. Available operator panel mask memory is
displayed in the Hardware Setup dialog box. To decrease mask size reduce number of menu
entries or reduce edit field width. Reducing caption and unit field width may also save few bytes.

Only one mask can be active at the time.

Program handling

Cybro program can get currently active mask number by reading variable current_mask. When
current_mask is zero, no mask is active.

Program may force execution of a certain mask by writing to variable next_mask. After the mask is
sent, next_mask is set to -1, and current_mask changes accordingly.

Operator panel ¶ Program handling

32

The following example shows mask handling process:

mask03 mask04

operator panel

sends a request
for a new mask

CyBro sends

mask04 to
operator panel

Table shows approximate timings and values for the transition:

current_mask

mask03 variable

next_mask

1

2-3ms 2-3ms 50-100ms

3

20

3

20

3

25

0

25

4

25

-1 -1 -1 4 -1

2 3 4

Events are marked by black arrows:

1. Enter is pressed
2. Value is sent to Cybro
3. Request for new mask is sent to Cybro
4. New mask sent to operator panel and activated

Red arrows mark value change.

The same transition may be initiated with the following plc program:

 if <condition> then
 op00_next_mask:=4;
 end_if;

Short gap in current_mask value comes from the network response time. To check if there is an
active mask, program should also check the value of next_mask, like the following example:

 if op00_current_mask=0 and op00_next_mask= - 1 then
 op00_next_mask:=10;
 end_if;

Both mask control variables may also be accessed remotely, using the A-bus.

Serial interface ¶ Features

33

Serial interface

Features

Cybro controller feature multiple communication ports.

Port description
A-bus
slave

A-bus
socket

Modbus
master

Modbus
slave

free pgm

COM1 RS232 serial port yes -
PLC

program
yes yes

COM2 RS232 serial port yes -
PLC

program
yes yes

COM3/
ENO

RS485 serial port or
EnOcean wireless

- - - - yes

RFM
free programmable
wireless interface

- - - - yes

CAN
IEX expansion
modules

yes - - - -

ETH
Ethernet interface,
TCP/IP protocol

yes yes
PLC

program
yes yes

COM1, COM2, CAN and ETH ports are available on each device. COM3, ENO and RFM are
optional, available on some hardware models, or when the corresponding order option is selected.

Operation mode, baudrate and port parameters are configured at design time, it's not possible to
change them while the program is running.

A-bus is native, proprietary protocol, used for sending and monitoring PLC program, reading PLC
variables by name (symbolic access) and exchanging data between controllers (socket interface).
More details about A-bus in the Networking section.

COM3 port is available in Cybro-3H v2 model, with RS485 interface.

ENO interface is used by EnOcean gateway, full featured implementation using Cybro as controller
and Mini Scada as user interface. ENO and COM3 are mutually exclusive, they can't exist on the
same device.

RFM interface is used to talk with WD-1 DALI wireless bridge, WM-1 serial wireless bridge and
other Cybro controllers with RFM option. It uses the standard 868MHz ISM band to deliver custom-
made messages.

Free programmable means that interface can be used in PLC program, opening possibility for a
range of new protocols.

Serial interface ¶ Free-programmable mode

34

Free-programmable mode

With this feature, a wide range of devices can be controlled: sensors, scales, modems, radio links,
printers and other. Protocol is implemented using the PLC program. Both wired and wireless
devices are supported.

RS232 and ETH communication ports are full duplex. RS485, ENO and RFM ports are half duplex.
Both master and slave operation are possible.

Each port has a fully separate transmit and receive buffer. Size of each buffer is 1042 bytes. That
allows for 1024 bytes payload and a few additional bytes for header and redundancy check.

Select port

 com_select(port: int);

Select must be executed before other communication commands. Available ports are:

1 - COM1, RS232 serial port
2 - COM2, RS232 serial port
3 - COM3, RS485 serial port or EnOcean wireless
4 - RFM, free programmable wireless interface
5 - ETH, Ethernet interface

The best position for com_select() is at the beginning of code section which implements the
protocol. Function can be executed in each scan, it just changes the pointer, with no effect on
current receive and transmit operations.

Create message

Binary messages are created by writing byte by byte to the transmit buffer.

 tx_bufwr(pos:int, data:int);

Write data byte to transmit buffer. Position is 0 to 1041, value is 0 to 255.

 tx_bufrd(pos:int):int;

Read data byte from transmit buffer. Position is 0 to 1041, value is 0 to 255.

ASCII messages are created with display print commands. Slot number is zero, x coordinate is
buffer position, y coordinate is ignored. Output goes to the selected transmit buffer.

 dclr(0);

Fill both receive and transmit buffer with zeros.

Serial interface ¶ Free-programmable mode

35

 dprnc(0, x:int, 0, c:char);

Write a single character on position x (same as tx_bufwr()).

 dprns(0, x:int, 0, str:string);

Write string enclosed in single quotes.

Special characters are entered as two or three-character combination. First character is backslash
('\'), others are:

combination ASCII code hex code

\n CR LF 0D 0A

\r CR 0D

\t TAB 09

\\ \ 5C

\xx any xx

The last combination is used to enter a hexadecimal code 00 to FF, e.g. '\41' is the letter 'A'.

 dprnb(0, x:int, 0, c0:char, c1:char, value:bit);

Write a single character, c0 or c1, depending on the bit value.

 dprni(0, x:int, 0, w:int, zb:bit, value:int);

Write 16-bit signed integer as ASCII decimal number. Parameter w is width, zb is zero blanking.

 dprnl(slot:int, x:int, y:int, w:int, zb:bit, value:long);

Write 32-bit signed long as ASCII decimal number. Parameter w is width, zb is zero blanking.

 dprnr(slot:int, x:int, y:int, w:int, dec:int, value:real);

Write floating point value as ASCII number with decimals. Parameter w is total width, including
decimal point and decimals. Parameter dec is number of decimals. Zero blanking is always on.

Send message

 tx_start(size :int);

Send the prepared message. Parameter size is number of characters to transmit. Transmission
starts from the beginning of the buffer (except the ETH port).

 tx_active():bit;

Check whether the transmitter is active: 0-no, 1-yes.

 tx_count():int;

Return number of characters left to send. When tx_count() is zero and tx_active() is true, the last
character is transmitting.

 tx_stop();

Stop transmitter at any time. Current character will be finished, but the rest of the message is not
transmitted.

Serial interface ¶ Free-programmable mode

36

Start receiver

 rx_start(beg_ch:char, end_ch:char, len:int, beg_tout :int, end_tout :i nt);

Start receiving and define condition to stop.

beg_ch - first character of received message. When receiving is started, all characters are ignored,
until the specified character is received. The character is written in the zero position of the receive
buffer. To receive message with no specific start character, set to zero.

end_ch - last character of received message. When specified character is received, receiver is
stopped (status 2). Character is written as the last byte of the received message. To receive
message with no specific end character, set to zero.

len - expected length of received message. After the specified number of bytes is received, receiver
is stopped (status 3). To receive a message of variable size, set to zero.

beg_tout - maximum waiting time for the first character, in milliseconds. When timeout is reached,
receiver is stopped (status 4). To receive with no time limit, set to zero.

end_tout - maximum time between consecutive characters, in milliseconds. When timeout is
reached, receiver is stopped (status 4). To receive with no time limit, set to zero.

For example, with 1200 bps, 8 bits and no parity; transmission of a single character takes about
8ms (start bit + 8 data bits + stop bit = 10bits, 10bits/1200bps=8.3ms). In such case, end time is
typically set to about 25ms.

Examples:

 rx_start(0,0,0,0,0); // receive continuously
 rx_start(0,0,0,0,50); // r eceive unlimit ed time , stop 50ms after the last character
 rx_start(':',' \ r',0,0,0); // r eceive messages starting with ':' and e nding with CR

Maximum length of received message is 1042 bytes. When an extra character is received, receiver
is restarted, the number of received characters start again from zero.

Receiver and transmitter are fully independent.

 rx_stop();

Stop receiving immediately (status 1).

 rx_count():int;

Returns number of received characters. Function rx_start() reset number of characters to zero.

 rx_active():bit;

Check whether the receiver is active: 0-no, 1-yes.

 rx_status():int;

Returns receiver status:

0 - receiver active
1 - stopped by command
2 - end character detected
3 - requested size received
4 - timeout expired

Serial interface ¶ Free-programmable mode

37

Parse received message

 rx_bufrd(pos:int):int;

Read data byte from receive buffer. Position is 0 to 1041, value is 0 to 255.

 rx_bufwr(pos:i nt, data:int);

Write data byte to receive buffer. Position is 0 to 1041, value is 0 to 255.

 rx_strcmp(pos :int, str:string):bit;

Compare receive buffer with a specified string. True when string matches, false otherwise.

 rx_strpos(pos:int, str:string):in t;

Search for the specified string. Search starts from the given position. If string is found, function
returns position of the first matching character, otherwise it returns -1.

 rx_strtoi(pos:int):int;

Read ASCII decimal number at the given position. If character at the specified position is space, it is
skipped until a digit is found. Conversion continues until the first non-digit character.

 rx_strtol(pos:int):long;

Read ASCII decimal number at the given position. If character at the specified position is space, it is
skipped until a digit is found. Conversion continues until the first non-digit character.

 rx_strtor(pos:int):real;

Read ASCII decimal number at the given position. If character at the specified position is space, it is
skipped until a digit is found. Conversion goes until the first non-numeric character.

Example:

Received message may contain keywords OPEN, CLOSE, AUTO and SET=<value>. Keywords are
sent in no particular order and separated by one or more spaces.

 SET=225 OPEN AUTO

Program that parses a message according to the specifications:

 if rx_strpos(0,'OPEN')<> - 1 then
 main_valve=1;
 end_if;

 i f rx_strpos(0,'CLOSE')<> - 1 then
 main_valve=0;
 end_if;

 if rx_strpos(0,'AUTO')<> - 1 then
 automatic_mode=1;
 end_if;

 position=rx_strpos(0,' SET=');
 if position<> - 1 then
 setpoint=rx_strtoi(position+4);
 end_if;

Serial interface ¶ Free-programmable TCP/IP

38

Free-programmable TCP/IP

Initialize socket

The first command must be com_select(), it directs all consecutive commands to the TCP/IP driver
(5-ETH). With ETH selected, first 10 bytes of communication buffer are reserved for IP header:

Tx buffer

Rx buffer

Receiver IP address and port must be written by plc program before the message is sent. Sender
IP address and port are written by system when message is received.

The following command is rx_start(), providing parameters to initialize the TCP/IP socket:

 rx_start(protocol:char , dummy: char , port:int , autostop: int , timeout:int);

protocol 0-none, 1-UDP, 2-TCP master, 3-TCP slave
port local port through which messages are sent and received
autostop ... when active, reply message will close the connection
timeout when time runs out [ms], connection is closed; zero to disable

In UDP mode, the controller is ready to receive and transmit UDP messages right away.

In TCP mode, either master (client) or slave (server) operation is selected. When initialized as a
master, Cybro uses receiver address and port to open the connection and send the first message.
When initialized as a slave, Cybro enters listen mode, waiting for connection on the selected port.

To prepare the outgoing message, use tx_bufwr() or display print commands. To send the
message, use tx_start(). Parameter size is the length of the message, without the header. Other
transmit commands are not used.

To check if the message has been received, read the first byte of the buffer using rx_bufrd(). When
result is not zero, message has arrived. The rx_count() returns received size, without the header.
Parsing is the same as with the serial port. When finished, use rx_bufwr() to invalidate the message
and prepare for the next one.

Command rx_status() returns state of the socket:

0 - closed
1 - UDP open
2 - TCP initialised
3 - TCP listen
4 - TCP connected

When message is transmitted or received, timeout is reloaded and rx_active() is set. When timeout
expires, rx_active() goes to zero.

Command rx_active() returns 1 when connection is extablished (status 4). To close connection at
any time, use rx_stop() command. To close the socket, use rx_start() with protocol set to zero.

Reserved local ports are 53 (DNS), 68 (DHCP), 8442 (A-bus LAN), 20000..29999 (A-bus WAN) and
502 (Modbus slave). Other port numbers are free to use.

Serial interface ¶ Free-programmable TCP/IP

39

UDP mode

User Datagram Protocol (UDP) is a simple connectionless protocol that allow devices to send and
receive messages. Sender destination port must be the same as the receiver local port. Message
can be sent to multiple recipients using the subnet broadcast address.

Once socket is open, use tx_start() to send and rx_bufrd() to detect the received messages.
Although the state is not changed, autostop and timeout can be used by reading rx_active().

TCP master

Transmission Control Protocol (TCP) is a connection-oriented protocol and requires handshaking to
start communication. Once a connection is established, data can be sent. In master mode,
connection is established when controller sends a message to the slave device.

If autostop is set, connection is closed when message is received. If timeout is set, connection
closes when time runs out. Timer is reloaded with each received and transmitted message. Only
one connection can be opened at a time.

TCP slave

In slave mode, controller is intialized and waiting for a connection.

The message can only be sent when the connection is established. When sending the message,
receiver ip address and port are not used, since connection is already established.

If autostop is set, connection is closed when message is transmitted. If timeout is set, connection
closes when time runs out. Slave timeout should be longer then or equal to the master timeout.
Timer is reloaded with each received and transmitted message. Only one connection can be
opened at a time.

